Abstract:
Prior to an intervention, a 3D rotational scan is acquired (at block 10) in respect of a body volume and reconstructed. In addition, three-dimensional image data in respect of the body volume is acquired (at block 12) using another modality, such as computerised tomography (CT) or magnetic resonance (MR), reconstructed, and prepared for visualisation. During the actual intervention, live two-dimensional fluoroscopic images are acquired (at block 14), using the imaging system employed to acquire the 3D rotational scan, and processed for visualisation. The 2D image data is registered (at block 16) to the 3D rotational image data acquired and reconstructed in respect of the body volume of interest, and then a 3D-3D registration process is employed (at block 18) to register the 3D image data acquired in respect of the same body volume using, for example, CT or MR imaging systems to the 3D rotational image data, and a display module (20) is used to align the 2D fluoroscopic image and the 3D MR/CT image as a fused or composite image and display the image.
Abstract:
A computed-tomography system comprises a data-processing system arranged to receive attenuation profiles for respective orientations. A lowest representative noise level of the individual attenuation profiles is determined. The attenuation profiles are filtered in dependence of said lowest representative noise level. In particular it is achieved that the filtered attenuation profiles have the lowest maximum noise level among the received attenuation profiles.
Abstract:
According to an exemplary embodiment a targeting method for targeting a first object from an entry point to a target point in an object (110) under examination is provided, wherein the method comprises selecting a two-dimensional image (301) of the object under examination depicting the entry point (305) and the target point (303) and determining a planned path (304) from the entry point to the target point, wherein the planned path has a first direction. Furthermore, the method comprises recording data representing a fluoroscopic image of the object under examination, wherein the fluoroscopic image is recorded under a second direction so that a normal of the image coincide with the first direction and determining whether the first object is on the determined planned path based on shape and/or position of the projection of the first object in the fluoroscopic image.
Abstract:
It is described a gain calibration for a two-dimensional X-ray detector (315), in which the gain coefficients for scattered radiation (307b) and direct radiation (307a) are measured or estimated separately. A weighed average may be applied on the appropriate scatter fraction. The scatter fraction depending gain calibration method produces less ring artifacts in X-ray images as compared to known gain calibration methods, which do not take into account the fraction of scattered radiation reaching the X-ray detector (315).
Abstract:
The present invention refers to 3D rotational X-ray imaging systems for use in computed tomography (CT) and, more particularly, to a fast, accurate and mathematically robust calibration method for determining the effective center of rotation (I) in not perfectly isocentric 3D rotational C-arm systems and eliminating substantially circular ring artifacts (RA) which arise when using such a CT scanner system for acquiring a set of 2D projection images of an object of interest to be three-dimensionally reconstructed. For this purpose, a C-arm based rotational CT scanner comprising at least one radiation detector (D) having an X-radiation sensitive surface exposed to an X-ray beam emitted by at least one X-ray tube (S), each rotating along a non-ideal circular trajectory (TF, TCD) about an object of interest to be three-dimensionally reconstructed from a set of 2D projection images is used for providing geometrical calibration data by scanning a calibration phantom from a plurality of distinct projection directions and calculating, for each projection direction, the 3D positions of the X-ray tube's focal spot and the X-ray detector's center. For approximating the exact 3D position and angular direction of the axis of rotation about which the at least one X-ray tube and the at least one radiation detector rotate, a circular regression technique using a number of mathematically robust least squares fits is applied.
Abstract:
According to an exemplary embodiment a targeting method for targeting a first object from an entry point to a target point in an object (110) under examination is provided, wherein the method comprises selecting a two-dimensional image (301) of the object under examination depicting the entry point (305) and the target point (303) and determining a planned path (304) from the entry point to the target point, wherein the planned path has a first direction. Furthermore, the method comprises recording data representing a fluoroscopic image of the object under examination, wherein the fluoroscopic image is recorded under a second direction so that a normal of the image coincide with the first direction and determining whether the first object is on the determined planned path based on shape and/or position of the projection of the first object in the fluoroscopic image.
Abstract:
The invention relates to a computer tomography apparatus in which the scanning trajectory is shaped as a helix and a conical radiation beam traverses the examination zone. According to the invention, the dimension of the detector window (or the part thereof which is used for the reconstruction) is a factor of 3, 5, 7 . . . larger than the distance between neighboring turns of the helix. Using this geometry, each voxel in the examination zone is irradiated exactly from an angular range of 3&pgr;, 5&pgr;, 7&pgr; . . . when it traverses the cone beam. Such data acquisition yields an improved image quality.
Abstract:
A patient (7) is irradiated by an X-ray source (1) in a computed tomography apparatus. The radiation is subsequently detected by the detector cells (5) of a position-sensitive X-ray detection system (4) and the intensities detected are applied to a computing device (16). Absorption as well as elastic and inelastic scattering of X-rays occur within the patient (7). The data acquired is corrected for elastic (coherent) scatter by deriving a deconvolution function from the elastic scatter function, which deconvolution function is applied to the data. The elastic scatter function is determined, for example by a computer simulation.
Abstract:
Systems and methods are provided to perform efficient, automatic cyclotron initialization, calibration, and beam adjustment. A process is provided that allows the automation of the initialization of a cyclotron after overnight or maintenance imposed shutdown. In one embodiment, five independent cyclotron system states are defined and the transition between one state to another may be automated, e.g., by the control system of the cyclotron. According to these embodiments, it is thereby possible to achieve beam operation after shutdown with minimal manual input. By applying an automatic procedure, all active devices of the cyclotron (e.g., RF system, extraction deflectors, ion source) are respectively ramped to predefined parameters.
Abstract:
The present invention refers to 3D rotational X-ray imaging systems for use in computed tomography (CT) and, more particularly, to a fast, accurate and mathematically robust calibration method for determining the effective center of rotation (I) in not perfectly isocentric 3D rotational C-arm systems and eliminating substantially circular ring artifacts (RA) which arise when using such a CT scanner system for acquiring a set of 2D projection images of an object of interest to be three-dimensionally reconstructed. For this purpose, a C-arm based rotational CT scanner comprising at least one radiation detector (D) having an X-radiation sensitive surface exposed to an X-ray beam emitted by at least one X-ray tube (S), each rotating along a non-ideal circular trajectory (TF, TCD) about an object of interest to be three-dimensionally reconstructed from a set of 2D projection images is used for providing geometrical calibration data by scanning a calibration phantom from a plurality of distinct projection directions and calculating, for each projection direction, the 3D positions of the X-ray tube's focal spot and the X-ray detector's center. For approximating the exact 3D position and angular direction of the axis of rotation about which the at least one X-ray tube and the at least one radiation detector rotate, a circular regression technique using a number of mathematically robust least squares fits is applied.