Abstract:
As the ion beam is accelerated, the radii of the closed orbits gradually increase, and the centers thereof move in a direction approaching the peripheral edge portion along a predetermined radial direction of the cavity, and upon reversing the direction of movement, move further toward the center of the cavity. The intensity distribution in the orbital plane of the main magnetic field is designed to realize the foregoing feature. Thus, an accelerator is provided that is compact and that enables the energy of an extracted beam to be changed, that enhances the efficiency of beam injection into the accelerator from an external ion source, and that improves a dose rate of the resulting extracted ion beam.
Abstract:
The invention relates to a drum assembly for a linear accelerator, the drum assembly comprising a drum having a front face including a front rim and a rear face including a rear rim, one or more support wheels supporting the drum, an arm extending from the front face of the drum and including a beam collimator through which a beam of radiation is emitted to form a radiation isocentre. One or more rear rim members are associated with the rear rim, the rear rim members adapted to substantially offset isocentre distortion due to unintended movement of the drum assembly. The invention also relates to variants thereto and combinations thereof.
Abstract:
An ion source 3 includes a discharge chamber 36 for generating ions, gas pipes 24 and 25 for supplying a sample gas to the discharge chamber 36, and an extraction hole 37 for extracting the ions from the discharge chamber 36, and at least two discharge chambers 36 are arranged side by side. As a result, provided are a circular accelerator, a particle therapy system, and an ion source in which an operation rate and maintainability of an apparatus are improved as compared with the related art.
Abstract:
Disclosed herein is a waveguide cell having a helical cavity. The waveguide cell has a central axis and a cavity having a transverse cross section whose rotational position about the central axis varies along the central axis. There is also disclosed a method a determining the shape of a waveguide cell.
Abstract:
The invention comprises a method and apparatus for scanning charged particles in a cancer therapy system, comprising the steps of: (1) providing a first and second dipole magnet system and a gap, the gap comprising a common gap length, along a path of the charged particles, within both the first and second dipole magnet systems, the gap comprising a progressively increasing x/y-plane cross-section area from an entrance area of the charged particles into the double dipole magnet system to an exit area of the double dipole magnet system, the x/y-plane perpendicular to a z-axis from a center of the entrance area to a center of the exit area; (2) scanning the positively charged particles along a first axis of the x/y-plane using the first dipole magnet system; and (3) scanning the positively charged particles along a second axis of the x/y-plane using the second dipole magnet system.
Abstract:
Ion beams are efficiently extracted with an accelerator that includes a circular vacuum container including a pair of circular return yokes facing each other. Six magnetic poles are radially disposed from the injection electrode at the periphery thereof in the return yoke. Six recessions are disposed alternately with the respective magnetic poles in the circumferential direction of the return yoke. In the vacuum container, a concentric trajectory region, in which multiple beam turning trajectories centered around the injection electrode are present, is formed, and an eccentric trajectory region, in which multiple beam turning trajectories eccentric from the injection electrode are present, is formed around the region. In the eccentric trajectory region, the beam turning trajectories are dense between the injection electrode and the inlet of the beam extraction path. Gaps between the beam turning trajectories are wide in a direction 180° opposite to the inlet of the beam extraction path.
Abstract:
A method and apparatus for generating a pulsed jet of fluid, and transforming the jet into a plasma. The method includes using a high-pressure rapid solenoid valve, and a pipe mounted on an outlet opening of the solenoid valve to produce a pulsed fluid jet which is sub-millimetric in size, and the atomic density of which is more than 1020 cm−3.
Abstract:
Operation control data of each of the constituent sub-units of a synchrotron is constructed by a combination of module data items (initial acceleration data item, plural energy change data items, and a deceleration control data item), corresponding to plural control intervals, respectively. A control start value, a control completion value, and a computing function for connecting the control start value with the control completion value are expressed in each of module data items. Further, the plural module data items are corrected on the basis of a correction data item of a residual field, and a power-supply control command value is sequentially outputted. By preparing correction table data of the residual field, expressed by irradiation energy and irradiation stage numbers of the irradiation energy beforehand, the correction table data items of the plural module data items are selected from the correction table data to be prepared.
Abstract:
A linear accelerator is disclosed, having a series of interconnected cavities through at least some of which an rf signal and an electron beam are sent, comprising at least one variable coupler projecting into the a cavity of the series, a control apparatus adapted to interpret an electrical signal from the coupler and derive diagnostic information as to the electron beam therefrom, wherein the control apparatus is further adapted to vary the interaction of the at least one coupler with the rf signal in dependence on the diagnostic information. Thus, the accelerator properties can be adjusted by encouraging or inciting an Higher-Order Mode (“HOM”) having a desired effect such as bunching and/or deflecting. The coupler could be rotateable, and partially or fully retractable, to allow its influence to be adjusted and/or for it to be removed from service when not needed. Several such probes could be available, approaching the cavity from different directions or at different locations, or approaching different cavities. The coupler can be asymmetric, in order to exert an appropriate influence on the cavity and provoke a useful HOM. For example, it can be elongate with at least one directional deviation, such as a hockey stick. Generally, however, the appropriate shape for the coupler will be dependent on the shape of the cavity with which it is working and the specific HOMs that are to be excited.
Abstract:
A control unit is provided with, a retaining section that retains a plurality of operation patterns each being a pattern of operation to be periodically repeated by an accelerator, the operation patterns having respective operation conditions adjusted for different emission times of an particle beam, to cause a deflection electromagnet in the accelerator to have an intended magnetic field intensity even under a presence of a hysteresis; a reading section for a plurality of slices of an irradiation target in a depth direction, which reads an irradiation condition for each of the slices; a selection section that selects the operation pattern suitable for each of the slices, on the basis of the read irradiation condition; and a main control section that controls, for each of the slices, the accelerator on the basis of the selected operation pattern and an irradiation device on the basis of the irradiation condition.