摘要:
Disclosed is an improved buffering method for controlling excess fiber length (EFL) and reducing post-extrusion shrinkage in loose buffer tubes. In this way, the method yields first-quality loose buffer tubes not only during steady-state operation but also during ramping, thereby increasing production efficiency and reducing waste.
摘要:
Disclosed is a fiber-optic cable that possesses a high cable filling coefficient (and/or a high cable fiber density) yet ensures that its enclosed optical fibers demonstrate improved attenuation performance when subjected to temperature variations between about −40° C. and 70° C. The fiber-optic cable is suitable for efficient installation into ducts, such as via blowing.
摘要:
Disclosed is an improved optical fiber that employs a novel coating system. When combined with a bend-insensitive glass fiber, the novel coating system according to the present invention yields an optical fiber having exceptionally low losses.The coating system features (i) a softer primary coating with excellent low-temperature characteristics to protect against microbending in any environment and in the toughest physical situations and, optionally, (ii) a colored secondary coating possessing enhanced color strength and vividness.The improved coating system provides optical fibers that are useful in reduced-size drop cables.
摘要:
Disclosed is a low-shrink buffer tube having a reduced diameter. The buffer tube provides adequate crush resistance and is suitable for deployments requiring mid-span access.
摘要:
Disclosed is a fiber-optic cable that possesses a high cable filling coefficient (and/or a high cable fiber density) yet ensures that its enclosed optical fibers demonstrate improved attenuation performance when subjected to temperature variations between about −40° C. and 70° C. The fiber-optic cable is suitable for efficient installation into ducts, such as via blowing.
摘要:
Disclosed is a buffer tube that possesses a higher buffer-tube filling coefficient. Optical fibers enclosed within the buffer tube demonstrate improved attenuation performance when subjected to temperature variations between about −40° C. and 70° C. The buffer tube is suitable for deployments requiring mid-span access.
摘要:
The present invention provides optical fiber communication cable assemblies useful for separating and conveying individual fibers from a multiple optical fiber cable to connectors in a protective manner. The optical fiber cable assembly is suitable for outdoor use and includes a (i) cable with multiple optical fibers; (ii) a furcation unit attached to the cable for directing individual optical fibers from the cable to furcation legs; and (iii) multiple furcation legs receiving at least one of the optical fibers. The furcation legs include (i) a buffer tube surrounding the optical fiber; (ii) strength members surrounding the buffer tube; and (iii) a jacket surrounding the strength members. The furcation legs typically exhibit a tensile rating of at least about 50 pounds (lbf), more typically 100 pounds (lbf) or more. Moreover, the furcation legs typically exhibit total shrinkage of less than about 2 percent when cycled from +23° C. to −40° C. to +70° C. to −40° C.
摘要:
A drop cable includes a jacket having first and second opposing sides. The first side has a concave surface. At least one strength member is disposed in the jacket. An optical transmission component is disposed within the jacket and proximate the concave surface. The optical transmission component includes a plurality of optical fibers.
摘要:
The present invention provides optical fiber communication cable assemblies useful for separating and conveying individual fibers from a multiple optical fiber cable to connectors in a protective manner. The optical fiber cable assembly is suitable for outdoor use and includes a (i) cable with multiple optical fibers; (ii) a furcation unit attached to the cable for directing individual optical fibers from the cable to furcation legs; and (iii) multiple furcation legs receiving at least one of the optical fibers. The furcation legs include (i) a buffer tube surrounding the optical fiber; (ii) strength members surrounding the buffer tube; and (iii) a jacket surrounding the strength members. The furcation legs typically exhibit a tensile rating of at least about 50 pounds (lbf), more typically 100 pounds (lbf) or more. Moreover, the furcation legs typically exhibit total shrinkage of less than about 2 percent when cycled from +23° C. to −40° C. to +70° C. to −40° C.
摘要:
Disclosed is a low-shrink buffer tube having a reduced diameter. The buffer tube provides adequate crush resistance and is suitable for deployments requiring mid-span access.