Abstract:
A method for patterning polycrystalline indium tin oxide by using a Gaussian laser beam focused on an amorphous indium tin oxide layer is disclosed to pattern the non-crystalline amorphous indium tin oxide layer and transfer part of the amorphous indium tin oxide layer into polycrystalline indium tin oxide while the remaining amorphous indium tin oxide layer is etched due to etching selectivity of an etching solution. The method comprises: providing a substrate with an amorphous indium tin oxide layer thereon on a carrier; transferring the amorphous indium tin oxide layer in a predetermined area into a polycrystalline indium tin oxide layer by emitting a Gaussian laser beam focused on the amorphous indium tin oxide layer in the predetermined area; and removing the remaining amorphous indium tin oxide layer on the substrate by an etching solution to form a patterned polycrystalline indium tin oxide layer.
Abstract:
A dual-receiving ultrasonic distance measuring equipment is disclosed, which uses a transmitter and two receivers, one of which serves as an objective and the other as a reference, to perform distance measurement. The transmitter and the reference receiver are fixedly installed on a phase adjusting platform, capable of adjusting a reference phase by fine-tuning the distance between the transmitter and the reference receiver. As the objective receiver is disposed on an object under measurement which is a distance away from the phase adjusting platform, there will be a phase shift due to the propagation of an ultrasonic wave from the transmitter as it is received by the two receivers. And thereby, the distance between the two receivers can be calculated based on the phase shift. The aforesaid ultrasonic distance measuring equipment can be applied in the positioning system of high precision machinery or other non-contact distance measuring system.
Abstract:
A laser interference system comprises a laser head, an interference lens, a reflector, an optic fiber transmission set, and an automatic laser path alignment unit having a photodiode, a data processing member and a control member. The photodiode is capable of sensing the position of the reflecting residual light of the reflector. The output signal of the position of the reflecting residual light is processed by the data processing member to become the electric voltage, which is transmitted to the control member for regulating the relative lateral displacement between the interference lens and the reflector.
Abstract:
A multi-color off-axis digital holographic system and the imaging method thereof are disclosed. The multi-color off-axis digital holographic system comprises: a plurality of light emitting diodes, for provide a red (R) beam, a green (G) beam and a blue (B) beam; an interference object lens module, for receiving the R, G, and B beams to generate a beam containing an interference signal; a color imaging device, for receiving the beam containing the interference signal and thus forming a hologram on a surface of the color imaging device by holographic interference while registering the hologram; and a processing device, for receiving the registered hologram form the color imaging device; wherein the processing device perform a zero-filling and reconstructing operations upon the received hologram to obtain phase information of the R, G and B beams. With the aforesaid system, a three-dimensional surface profile with respect to a RG synthetic wavelength is obtained according to a calculation using the phase information of the R and G beams as well as the wavelengths thereof, and similarly, a three-dimensional surface profile with respect to a GB synthetic wavelength is obtained according to a calculation using the phase information of the G and B beams as well as the wavelengths thereof. Thereafter, by performing a calculation using the RG synthetic wavelength and its phase as well as the GB synthetic wavelength and its phase, an overall three-dimensional surface profile with respect to a complete synthetic wavelength is obtained.
Abstract:
A multi-color off-axis digital holographic system and the imaging method thereof are disclosed. The multi-color off-axis digital holographic system comprises: a plurality of light emitting diodes, for provide a red (R) beam, a green (G) beam and a blue (B) beam; an interference object lens module, for receiving the R, G, and B beams to generate a beam containing an interference signal; a color imaging device, for receiving the beam containing the interference signal and thus forming a hologram on a surface of the color imaging device by holographic interference while registering the hologram; and a processing device, for receiving the registered hologram form the color imaging device; wherein the processing device perform a zero-filling and reconstructing operations upon the received hologram to obtain phase information of the R, G and B beams. With the aforesaid system, a three-dimensional surface profile with respect to a RG synthetic wavelength is obtained according to a calculation using the phase information of the R and G beams as well as the wavelengths thereof, and similarly, a three-dimensional surface profile with respect to a GB synthetic wavelength is obtained according to a calculation using the phase information of the G and B beams as well as the wavelengths thereof. Thereafter, by performing a calculation using the RG synthetic wavelength and its phase as well as the GB synthetic wavelength and its phase, an overall three-dimensional surface profile with respect to a complete synthetic wavelength is obtained.
Abstract:
A method for patterning polycrystalline indium tin oxide by using a Gaussian laser beam focused on an amorphous indium tin oxide layer is disclosed to pattern the non-crystalline amorphous indium tin oxide layer and transfer part of the amorphous indium tin oxide layer into polycrystalline indium tin oxide while the remaining amorphous indium tin oxide layer is etched due to etching selectivity of an etching solution. The method comprises: providing a substrate with an amorphous indium tin oxide layer thereon on a carrier; transferring the amorphous indium tin oxide layer in a predetermined area into a polycrystalline indium tin oxide layer by emitting a Gaussian laser beam focused on the amorphous indium tin oxide layer in the predetermined area; and removing the remaining amorphous indium tin oxide layer on the substrate by an etching solution to form a patterned polycrystalline indium tin oxide layer.