Abstract:
A multi-color off-axis digital holographic system and the imaging method thereof are disclosed. The multi-color off-axis digital holographic system comprises: a plurality of light emitting diodes, for provide a red (R) beam, a green (G) beam and a blue (B) beam; an interference object lens module, for receiving the R, G, and B beams to generate a beam containing an interference signal; a color imaging device, for receiving the beam containing the interference signal and thus forming a hologram on a surface of the color imaging device by holographic interference while registering the hologram; and a processing device, for receiving the registered hologram form the color imaging device; wherein the processing device perform a zero-filling and reconstructing operations upon the received hologram to obtain phase information of the R, G and B beams. With the aforesaid system, a three-dimensional surface profile with respect to a RG synthetic wavelength is obtained according to a calculation using the phase information of the R and G beams as well as the wavelengths thereof, and similarly, a three-dimensional surface profile with respect to a GB synthetic wavelength is obtained according to a calculation using the phase information of the G and B beams as well as the wavelengths thereof. Thereafter, by performing a calculation using the RG synthetic wavelength and its phase as well as the GB synthetic wavelength and its phase, an overall three-dimensional surface profile with respect to a complete synthetic wavelength is obtained.
Abstract:
A three-dimensional profile inspecting apparatus includes at least two optical inspecting apparatuses and a tilt angle adjusting mechanism. The tilt angle adjusting mechanism is equipped with the at least two optical inspecting apparatuses so as to adjust the tilt angles of the at least two optical inspecting apparatuses. When the tilt angles of the optical inspecting apparatuses are changed, the focuses of the optical inspecting apparatuses remain at a single position and a subject to be inspected is within the fields of view of the optical inspecting apparatuses. The three-dimensional profile of the subject can be obtained by building the images collected by the two optical inspecting apparatuses.
Abstract:
The present disclosure provides a method and system for focusing, which modulates a broadband light into a dispersive light having a higher dispersion characteristic and a lower dispersion characteristic, and the dispersion light is projected onto an object so as to form an object light. By means of the filtering and dividing procedure, a first optical spectrum of the dispersion light with respect to the higher dispersion characteristic is utilized to detect a height information of the surface profile of the object. Then, according to the height information, a second optical spectrum of the dispersion light with respect to the lower dispersion characteristic is adjusted to focus onto the object so that an imaging sensing device is capable of sensing the object light with respect to the lower dispersion characteristic, and thereby obtaining a clear and focusing image corresponding to the surface of the object.
Abstract:
A multi-axis adjusting apparatus includes a base seat, and an adjusting seat, a sliding seat and a rotating seat installed in a sequence on the base seat. A plurality of worm and worm gears are used to control the adjusting seat, and guiding slots and guiding pillars are used to cooperatively guide the sliding seat and the rotating seat. Besides, adjusting elements for controlling adjustments are screwed at one side of the seats. Whereby, an optical engine is driven to process multi-dimensional linear and rotating movements.
Abstract:
A measuring method for topography of moving specimen and a measuring apparatus thereof is disclosed, providing a measuring module that moves along with a testing specimen to narrow relative velocity of the testing specimen and the measuring module so that the measuring module is able to have enough luminous intensity signal at the same position in time, to measure the topography or the thickness of the testing specimen.
Abstract:
A three-dimensional profile inspecting apparatus includes at least two optical inspecting apparatuses and a tilt angle adjusting mechanism. The tilt angle adjusting mechanism is equipped with the at least two optical inspecting apparatuses so as to adjust the tilt angles of the at least two optical inspecting apparatuses. When the tilt angles of the optical inspecting apparatuses are changed, the focuses of the optical inspecting apparatuses remain at a single position and a subject to be inspected is within the fields of view of the optical inspecting apparatuses. The three-dimensional profile of the subject can be obtained by building the images collected by the two optical inspecting apparatuses.
Abstract:
A measuring method for topography of moving specimen and a measuring apparatus thereof is disclosed, providing a measuring module that moves along with a testing specimen to narrow relative velocity of the testing specimen and the measuring module so that the measuring module is able to have enough luminous intensity signal at the same position in time, to measure the topography or the thickness of the testing specimen.
Abstract:
A method and system for three-dimensional polarization-based confocal microscopy are provided in the present disclosure for analyzing the surface profile of an object. In the present disclosure, a linear-polarizing structured light formed by an optical grating is projected on the object underlying profile measurement. By means of a set of polarizers and steps of shifting the structured light, a series of images with respect to the different image-acquired location associated with the object are obtained using confocal principle. Following this, a plurality of focus indexes respectively corresponding to a plurality of inspected pixels of each image are obtained for forming a focus curve with respect to the measuring depth and obtaining a peak value associated with each depth response curve. Finally, a depth location with respect to the peak value for each depth response curve is obtained for reconstructing the surface profile of the object.
Abstract:
A three-dimensional profile inspecting apparatus includes at least two optical inspecting apparatuses and a tilt angle adjusting mechanism. The tilt angle adjusting mechanism is equipped with the at least two optical inspecting apparatuses so as to adjust the tilt angles of the at least two optical inspecting apparatuses. When the tilt angles of the optical inspecting apparatuses are changed, the focuses of the optical inspecting apparatuses remain at a single position and a subject to be inspected is within the fields of view of the optical inspecting apparatuses. The three-dimensional profile of the subject can be obtained by building the images collected by the two optical inspecting apparatuses.
Abstract:
A multi-color off-axis digital holographic system and the imaging method thereof are disclosed. The multi-color off-axis digital holographic system comprises: a plurality of light emitting diodes, for provide a red (R) beam, a green (G) beam and a blue (B) beam; an interference object lens module, for receiving the R, G, and B beams to generate a beam containing an interference signal; a color imaging device, for receiving the beam containing the interference signal and thus forming a hologram on a surface of the color imaging device by holographic interference while registering the hologram; and a processing device, for receiving the registered hologram form the color imaging device; wherein the processing device perform a zero-filling and reconstructing operations upon the received hologram to obtain phase information of the R, G and B beams. With the aforesaid system, a three-dimensional surface profile with respect to a RG synthetic wavelength is obtained according to a calculation using the phase information of the R and G beams as well as the wavelengths thereof, and similarly, a three-dimensional surface profile with respect to a GB synthetic wavelength is obtained according to a calculation using the phase information of the G and B beams as well as the wavelengths thereof. Thereafter, by performing a calculation using the RG synthetic wavelength and its phase as well as the GB synthetic wavelength and its phase, an overall three-dimensional surface profile with respect to a complete synthetic wavelength is obtained.