Abstract:
A forceps includes a housing having a shaft attached thereto. The shaft has an end effector assembly disposed at a distal end thereof. The end effector assembly includes a pair of jaw members disposed in opposing relation relative to one another. At least one of the jaw members is moveable relative to the other between a spaced apart position and an approximated position for grasping tissue therebetween. At least one shape memory cutting member is coupled to one of the jaw members. The shape memory cutting member(s) is transitionable between a retracted state and an extended state. In the extended state, the cutting member(s) extends between the jaw members to cut tissue disposed therebetween when the jaw members are in the approximated position.
Abstract:
A forceps includes a housing having a shaft attached thereto and an end effector assembly disposed at a distal end of the shaft, the end effector assembly includes first and second jaw members disposed in opposed relation relative to one another. At least one of the jaw members is moveable relative to the other between a spaced-apart position and an approximated position for grasping tissue therebetween. Each of the jaw members includes first and second longitudinal jaw halves. At least one of the first and second jaw halves of each jaw member is moveable with respect to the other jaw half between an aligned position and a displaced position for cutting tissue disposed between the jaw members.
Abstract:
A method for manufacturing an end effector assembly is provided. The method includes grasping a gap-setting gauge between first and second jaw members moveable relative to one another about a pivot between a first, spaced-apart position and a second position proximate tissue and setting the first and second jaw members such that in the approximated position the jaw members cooperate to define a gap distance between the jaw members equivalent to the thickness of the gap-setting gauge such that when positioning tissue between the jaw members full approximation of the jaws is limited to the gap distance.
Abstract:
A surgical instrument includes a shaft formed via extrusion. The shaft has one or more lumens extending therethrough. The lumen(s) each define a cross-sectional configuration. An end effector assembly is coupled to a distal end of the shaft. One or more components are coupled to the end effector assembly. The component(s) extend proximally from the end effector into the lumen(s) of the shaft. One or more of the components is formed via stamping. The component(s) define a cross-sectional configuration substantially complementary to the cross-section configuration of the lumen into which they extend.
Abstract:
An end effector assembly having first and second jaw members is provided where one or both of the jaw members is moveable relative to the other between a spaced-apart position and an approximated position for grasping tissue therebetween. One (or both) of the jaw members includes an inwardly-facing surface having a slot defined therein and a wire having an insulative coating. A seal plate has at least one protrusion that is configured to be disposed in the slot. The at least one protrusion of the seal plate is configured to displace the insulative coating from the wire thereby forming an electrical connection therewith when the at least one protrusion is disposed in the slot.