Abstract:
An electrosurgical forceps includes a housing having a shaft affixed thereto, the shaft including jaw members at a distal end thereof. The forceps also includes a switch assembly that includes a supporting member, a flexible membrane circuit having snap dome switch contacts operably fixed thereto, and ergonomically-contoured keytops. The switch assembly provides at least one monopolar activation switch, and a bipolar activation switch. The forceps also include a drive mechanism which causes the jaw members to move relative to one another for manipulating tissue. A monopolar safety switch is incorporated into the switch assembly which cooperates with the drive mechanism to inhibit the monopolar activation switch when the jaw members are in an open position.
Abstract:
A forceps is provided and includes a housing having a shaft. An end effector assembly operatively connects to a distal end of the shaft and includes a pair of first and second jaw members. One or both of the first and second jaw members is movable relative to the other jaw member from a clamping position to an open position. A resilient member operably couples to at least one of the first and second jaw members. The resilient member is configured to bias the first and second jaw members in the clamping position and provide a closure force on tissue disposed therebetween.
Abstract:
A method for manufacturing an end effector assembly is provided. The method includes grasping a gap-setting gauge between first and second jaw members moveable relative to one another about a pivot between a first, spaced-apart position and a second position proximate tissue and setting the first and second jaw members such that in the approximated position the jaw members cooperate to define a gap distance between the jaw members equivalent to the thickness of the gap-setting gauge such that when positioning tissue between the jaw members full approximation of the jaws is limited to the gap distance.
Abstract:
A surgical instrument is provided. The surgical instrument includes an end effector assembly including first and second jaw members moveable relative to one another between a first, spaced-apart position and a second position proximate tissue, wherein, in the second position, the jaw members cooperate to define a cavity that is configured to receive tissue between the jaw members and a resilient electrically conductive sealing surface operably coupled to at least one jaw member, the resilient electrically conductive sealing surface selectively positionable from a first unflexed position to a second flexed position.
Abstract:
A hand-held testing device tests operation of acoustic elements of an acoustic device. The hand-held testing device has a housing, a power supply local to the housing, an acoustic transducer, and circuitry. The circuitry is disposed within the housing and is provided in electrical communication with the power supply and with the acoustic transducer. The circuitry is configured to identify production of a voltage pulse by the acoustic transducer in response to receipt of a received acoustic signal by the acoustic transducer from one of the acoustic elements and to operate the transducer to transmit a transmitted acoustic signal to the acoustic element.
Abstract:
A hand-held testing device tests operation of acoustic elements of an acoustic device. The hand-held testing device has a housing, a power supply local to the housing, an acoustic transducer, and circuitry. The circuitry is disposed within the housing and is provided in electrical communication with the power supply and with the acoustic transducer. The circuitry is configured to identify production of a voltage pulse by the acoustic transducer in response to receipt of a received acoustic signal by the acoustic transducer from one of the acoustic elements and to operate the transducer to transmit a transmitted acoustic signal to the acoustic element.
Abstract:
A surgical instrument is provided. The surgical instrument includes an end effector assembly including first and second jaw members moveable relative to one another between a first, spaced-apart position and a second position proximate tissue, wherein, in the second position, the jaw members cooperate to define a cavity that is configured to receive tissue between the jaw members and a resilient electrically conductive sealing surface operably coupled to at least one jaw member, the resilient electrically conductive sealing surface selectively positionable from a first unflexed position to a second flexed position.
Abstract:
A forceps is provided and includes a housing having a shaft. An end effector assembly operatively connects to a distal end of the shaft and includes a pair of first and second jaw members. One or both of the first and second jaw members is movable relative to the other jaw member from a clamping position to an open position. A resilient member operably couples to at least one of the first and second jaw members. The resilient member is configured to bias the first and second jaw members in the clamping position and provide a closure force on tissue disposed therebetween.
Abstract:
An end effector assembly having first and second jaw members is provided where one or both of the jaw members is moveable relative to the other between a spaced-apart position and an approximated position for grasping tissue therebetween. One (or both) of the jaw members includes an inwardly-facing surface having a slot defined therein and a wire having an insulative coating. A seal plate has at least one protrusion that is configured to be disposed in the slot. The at least one protrusion of the seal plate is configured to displace the insulative coating from the wire thereby forming an electrical connection therewith when the at least one protrusion is disposed in the slot.