Abstract:
An ultrahigh differential current perpendicular to the plane dual spin valve read head with high pinning stability. The high pinning stability may be achieved using the same anti-ferromagnetic materials for two spin valves by introducing a double synthetic anti-ferromagnetic structure in one of the two spin valves.
Abstract:
In an embodiment, a sensor arrangement may be provided. The sensor arrangement may include a sensor including a first spin valve. The first spin valve may include a first free layer structure; a first pinning structure disposed over the first free layer structure; and a first anti-ferromagnetic layer disposed over the first pinning structure. The sensor may further include a second spin valve. The second spin valve may include a second free layer structure; a second pinning structure disposed over the second free layer structure; and a second anti-ferromagnetic layer disposed over the second pinning structure. The sensor may also include a separator structure positioned between the first spin valve and the second spin valve such that the separator structure may be in contact with the first free layer structure and the second free layer structure. The first pinning structure may include an odd number of first ferromagnetic layers and the second pinning structure may include an even number of second ferromagnetic layers so as to enable the sensor to provide a differential signal when a current flows through the sensor.
Abstract:
A magnetoresistive memory cell includes a magnetic tunnel junction (MTJ). The MTJ includes a magnetic layer having a pinned magnetic moment, a tunneling layer, and a free layer. The free layer includes first and second ferromagnetic layers having respective first and second free magnetic moments, which are anti-ferromagnetically coupled to each other and align with a preferred axis of alignment in the absence of an applied magnetic field. The MTJ has an electrical resistance dependent on the direction of one of the free magnetic moments. The memory cell also includes a guide layer formed of a ferromagnetic material providing a guiding magnetic moment, which is configured and positioned so that the guiding magnetic moment is more strongly magnetically coupled to the second free magnetic moment than to the first free magnetic moment, and is aligned with the axis in the absence of the applied magnetic field.