摘要:
A method for assessing events detected by a surveillance system includes assessing the likelihood that the events correspond to events being monitored from feedback in response to a condition set by a user. Classifiers are created for the events from the feedback. The classifiers are applied to allow the surveillance system improve its accuracy when processing new video data.
摘要:
Detecting an object includes receiving depth data and infrared (IR) data from a depth sensor. A first background subtraction is performed on the IR data to create a first mask, and a second background subtraction is performed on the IR data to create a second mask. The first and second masks and the depth data are merged to create a third mask.
摘要:
Recognizing a command may include monitoring a tangible reference with a depth sensor, maintaining a virtual reference approximately on calibrated three dimensional coordinates of the tangible reference, maintaining a touch space adjacent the virtual reference, and recognizing a command when a predetermined object enters the touch space.
摘要:
Among other things, methods, systems and computer program products are described for detecting and tracking a moving object in a scene. One or more residual pixels are identified from video data. At least two geometric constraints are applied to the identified one or more residual pixels. A disparity of the one or more residual pixels to the applied at least two geometric constraints is calculated. Based on the detected disparity, the one or more residual pixels are classified as belonging to parallax or independent motion and the parallax classified residual pixels are filtered. Further, a moving object is tracked in the video data. Tracking the object includes representing the detected disparity in probabilistic likelihood models. Tracking the object also includes accumulating the probabilistic likelihood models within a number of frames during the parallax filtering. Further, tracking the object includes based on the accumulated probabilistic likelihood models, extracting an optimal path of the moving object.
摘要:
Detecting an object includes receiving depth data and infrared (IR) data from a depth sensor. A first background subtraction is performed on the IR data to create a first mask, and a second background subtraction is performed on the IR data to create a second mask. The first and second masks and the depth data are merged to create a third mask.
摘要:
Among other things, methods, systems and computer program products are described for detecting and tracking a moving object in a scene. One or more residual pixels are identified from video data. At least two geometric constraints are applied to the identified one or more residual pixels. A disparity of the one or more residual pixels to the applied at least two geometric constraints is calculated. Based on the detected disparity, the one or more residual pixels are classified as belonging to parallax or independent motion and the parallax classified residual pixels are filtered. Further, a moving object is tracked in the video data. Tracking the object includes representing the detected disparity in probabilistic likelihood models. Tracking the object also includes accumulating the probabilistic likelihood models within a number of frames during the parallax filtering. Further, tracking the object includes based on the accumulated probabilistic likelihood models, extracting an optimal path of the moving object.
摘要:
Recognizing a command may include monitoring a tangible reference with a depth sensor, maintaining a virtual reference approximately on calibrated three dimensional coordinates of the tangible reference, maintaining a touch space adjacent the virtual reference, and recognizing a command when a predetermined object enters the touch space.