Model training for automatic speech recognition from imperfect transcription data
    1.
    发明授权
    Model training for automatic speech recognition from imperfect transcription data 有权
    从不完美的转录数据自动语音识别的模型训练

    公开(公告)号:US09280969B2

    公开(公告)日:2016-03-08

    申请号:US12482142

    申请日:2009-06-10

    CPC分类号: G10L15/063 G10L15/065

    摘要: Techniques and systems for training an acoustic model are described. In an embodiment, a technique for training an acoustic model includes dividing a corpus of training data that includes transcription errors into N parts, and on each part, decoding an utterance with an incremental acoustic model and an incremental language model to produce a decoded transcription. The technique may further include inserting silence between a pair of words into the decoded transcription and aligning an original transcription corresponding to the utterance with the decoded transcription according to time for each part. The technique may further include selecting a segment from the utterance having at least Q contiguous matching aligned words, and training the incremental acoustic model with the selected segment. The trained incremental acoustic model may then be used on a subsequent part of the training data. Other embodiments are described and claimed.

    摘要翻译: 描述了用于训练声学模型的技术和系统。 在一个实施例中,用于训练声学模型的技术包括将包括转录错误的训练数据的语料库划分成N个部分,并且在每个部分上,用增量声学模型和增量语言模型解码语音以产生解码的转录。 该技术可以进一步包括将一对单词之间的沉默插入解码的转录中,并根据每个部分的时间将与发音对应的原始转录与解码的转录对准。 该技术可以进一步包括从具有至少Q个连续匹配对齐字的话语中选择一段,以及使用所选择的段来训练增量声学模型。 然后可以在训练数据的后续部分上使用经过训练的增量声学模型。 描述和要求保护其他实施例。

    Online distorted speech estimation within an unscented transformation framework
    2.
    发明授权
    Online distorted speech estimation within an unscented transformation framework 有权
    一个无限转换框架内的在线扭曲语音估计

    公开(公告)号:US08731916B2

    公开(公告)日:2014-05-20

    申请号:US12948935

    申请日:2010-11-18

    IPC分类号: G10L21/02

    CPC分类号: G10L19/005 G10L15/20

    摘要: Noise and channel distortion parameters in the vectorized logarithmic or the cepstral domain for an utterance may be estimated, and subsequently the distorted speech parameters in the same domain may be updated using an unscented transformation framework during online automatic speech recognition. An utterance, including speech generated from a transmission source for delivery to a receiver, may be received by a computing device. The computing device may execute instructions for applying the unscented transformation framework to speech feature vectors, representative of the speech, in order to estimate, in a sequential or online manner, static noise and channel distortion parameters and dynamic noise distortion parameters in the unscented transformation framework. The static and dynamic parameters for the distorted speech in the utterance may then be updated from clean speech parameters and the noise and channel distortion parameters using non-linear mapping.

    摘要翻译: 可以估计用于话语的向量化对数或倒频域中的噪声和信道失真参数,并且随后可以在在线自动语音识别期间使用无密码变换框架来更新相同域中的失真语音参数。 包括从发送源产生的用于传送到接收机的语音的话语可以被计算设备接收。 计算设备可以执行用于将无声变换框架应用于代表语音的语音特征向量的指令,以便以顺序或在线方式估计无密度变换框架中的静态噪声和信道失真参数以及动态噪声失真参数 。 然后可以使用非线性映射从干净的语音参数和噪声和信道失真参数中更新话音中失真语音的静态和动态参数。

    Emulating legacy hardware using IEEE 754 compliant hardware
    3.
    发明授权
    Emulating legacy hardware using IEEE 754 compliant hardware 有权
    使用IEEE 754兼容硬件仿真传统硬件

    公开(公告)号:US08352241B2

    公开(公告)日:2013-01-08

    申请号:US12393215

    申请日:2009-02-26

    申请人: Jinyu Li Ke Deng Chen Li

    发明人: Jinyu Li Ke Deng Chen Li

    IPC分类号: G06F9/455

    CPC分类号: G06F9/455

    摘要: Emulating legacy hardware using IEEE 754 compliant hardware is disclosed herein. In some aspects, the emulation includes locating an instruction that includes NaN (not a number) as at least one of an operand or a resultant. The emulation adjusts the resultant of the instruction, via additional code, to produce a final resultant of non-compliant (legacy) hardware. Legacy software, which was written in anticipation of processing by legacy hardware, may then be processed using compliant hardware.

    摘要翻译: 本文公开了使用IEEE 754兼容硬件来仿真传统硬件。 在一些方面,仿真包括将包括NaN(不是数字)的指令定位为操作数或结果中的至少一个。 仿真通过附加代码来调整指令的结果,以产生不符合(遗留)硬件的最终结果。 然后可以使用兼容的硬件来处理传统硬件所预期的旧版软件。

    VISUAL BASED IDENTITIY TRACKING
    5.
    发明申请
    VISUAL BASED IDENTITIY TRACKING 有权
    基于视觉识别跟踪

    公开(公告)号:US20110190055A1

    公开(公告)日:2011-08-04

    申请号:US12696282

    申请日:2010-01-29

    IPC分类号: A63F9/24

    摘要: A video game system (or other data processing system) can visually identify a person entering a field of view of the system and determine whether the person has been previously interacting with the system. In one embodiment, the system establishes thresholds, enrolls players, performs the video game (or other application) including interacting with a subset of the players based on the enrolling, determines that a person has become detectable in the field of view of the system, automatically determines whether the person is one of the enrolled players, maps the person to an enrolled player and interacts with the person based on the mapping if it is determined that the person is one of the enrolled players, and assigns a new identification to the person and interacts with the person based on the new identification if it is determined that the person is not one of the enrolled players.

    摘要翻译: 视频游戏系统(或其他数据处理系统)可以在视觉上识别进入系统的视野的人,并且确定该人是否已经以前与系统进行了交互。 在一个实施例中,系统建立阈值,登记玩家,执行视频游戏(或其他应用),包括基于登记与玩家的子集进行交互,确定人在系统的视野中变得可检测到, 自动确定该人是否是登记的玩家之一,如果确定该人是登记的玩家之一,则将该人映射到登记的玩家并且基于该映射与该人进行交互,并且向该人分配新的身份 并且如果确定该人不是登记的玩家之一,则基于该新身份与该人交互。

    HIGH PERFORMANCE HMM ADAPTATION WITH JOINT COMPENSATION OF ADDITIVE AND CONVOLUTIVE DISTORTIONS
    6.
    发明申请
    HIGH PERFORMANCE HMM ADAPTATION WITH JOINT COMPENSATION OF ADDITIVE AND CONVOLUTIVE DISTORTIONS 有权
    高性能HMM适应与补充和转换失败的联合补偿

    公开(公告)号:US20090144059A1

    公开(公告)日:2009-06-04

    申请号:US11949044

    申请日:2007-12-03

    IPC分类号: G10L15/14

    CPC分类号: G10L15/20 G10L15/142

    摘要: A method of compensating for additive and convolutive distortions applied to a signal indicative of an utterance is discussed. The method includes receiving a signal and initializing noise mean and channel mean vectors. Gaussian dependent matrix and Hidden Markov Model (HMM) parameters are calculated or updated to account for additive noise from the noise mean vector or convolutive distortion from the channel mean vector. The HMM parameters are adapted by decoding the utterance using the previously calculated HMM parameters and adjusting the Gaussian dependent matrix and the HMM parameters based upon data received during the decoding. The adapted HMM parameters are applied to decode the input utterance and provide a transcription of the utterance.

    摘要翻译: 讨论了补偿施加到表示话语的信号的加法和卷积失真的方法。 该方法包括接收信号并初始化噪声平均和信道均值向量。 计算或更新高斯依赖矩阵和隐马尔可夫模型(HMM)参数以考虑来自信道平均向量的噪声平均向量或卷积失真的加性噪声​​。 HMM参数通过使用先前计算出的HMM参数解码话音并根据解码期间接收到的数据调整高斯相关矩阵和HMM参数进行调整。 适应的HMM参数被应用于解码输入的话语并提供话语的转录。

    VGPU: a real time GPU emulator
    9.
    发明授权
    VGPU: a real time GPU emulator 有权
    VGPU:实时GPU模拟器

    公开(公告)号:US08711159B2

    公开(公告)日:2014-04-29

    申请号:US12391066

    申请日:2009-02-23

    IPC分类号: G06T1/00

    CPC分类号: G06T1/20

    摘要: An exemplary method for emulating a graphics processing unit (GPU) includes executing a graphics application on a host computing system to generate commands for a target GPU wherein the host computing system includes host system memory and a different, host GPU; converting the generated commands into intermediate commands; based on one or more generated commands that call for one or more shaders, caching one or more corresponding shaders in a shader cache in the host system memory; based on one or more generated commands that call for one or more resources, caching one or more corresponding resources in a resource cache in the host system memory; based on the intermediate commands, outputting commands for the host GPU; and based on the output commands for the host GPU, rendering graphics using the host GPU where output commands that call for one or more shaders access the one or more corresponding shaders in the shader cache and where output commands that call for one or more resources access the one or more corresponding resources in the resource cache. Other methods, devices and systems are also disclosed.

    摘要翻译: 用于模拟图形处理单元(GPU)的示例性方法包括在主计算系统上执行图形应用以生成目标GPU的命令,其中主计算系统包括主机系统存储器和不同的主机GPU; 将生成的命令转换为中间命令; 基于一个或多个生成的命令来调用一个或多个着色器,将一个或多个对应的着色器缓存在所述主机系统存储器中的着色器高速缓存中; 基于调用一个或多个资源的一个或多个生成的命令,高速缓存所述主机系统存储器中的资源高速缓存中的一个或多个相应的资源; 基于中间命令,输出主机GPU的命令; 并且基于用于主机GPU的输出命令,使用主机GPU渲染图形,其中调用一个或多个着色器的输出命令访问着色器高速缓存中的一个或多个对应的着色器,以及其中调用一个或多个资源访问的输出命令 资源高速缓存中的一个或多个相应的资源。 还公开了其它方法,装置和系统。