Abstract:
Tissue stimulation systems, such as spinal cord stimulation systems, include a pulse generator to generate pulses at various amplitude, duration, and frequency through one or more electrodes. A visual depiction of both a pulse and an electrode configuration is thus provided herein. These depictions may be used in a stimulation display interface to readily convey stimulation parameter information to a user, wherein the interface is used in a stimulation session.
Abstract:
A solar reflector assembly is provided for generating energy from solar radiation. The solar reflector assembly is configured to be deployed on a supporting body of liquid and to reflect solar radiation to a solar collector. A solar reflector assembly comprises an inflatable elongated tube having an upper portion formed at least partially of flexible material and a lower ballast portion formed at least partially of flexible material. A reflective sheet is coupled to a wall of the tube to reflect solar radiation. The elongated tube has an axis of rotation oriented generally parallel to a surface of a supporting body of liquid.
Abstract:
A system and method for rapidly switching stimulation parameters of a Spinal Cord Stimulation (SCS) system increases the number of stimulation parameter sets that may be tested during a fitting procedure, or alternatively, reduces the time required for the fitting procedure. The switching method comprises selecting a new stimulation parameter set, and setting the initial stimulation levels to levels at or just below an estimated perception threshold of the patient. The estimated perception level is based on previous stimulation results. The stimulation level is then increased to determine a minimum stimulation level for effective stimulation, and/or an optimal stimulation level, and/or a maximum stimulation level, based on patient perception.
Abstract:
A system and method are provided for protecting bio-reactor housing from solar radiation, by applying UV-protective material to an outer surface of a plastic wall of the bio-reactor housing to protect from solar radiation. The housing includes a wall formed of plastic that defines the outer surface. In this manner, the effective life of the housing is extended and the overall cost of generation of photosynthetic biomass is decreased, improving system performance and cost-effectiveness.
Abstract:
A neural stimulation system automatically corrects or adjusts the stimulus magnitude (stimulation energy) in order to maintain a comfortable and effective stimulation therapy. Because the changes in impedance associated with the electrode-tissue interface can indicate obstruction of current flow and positional lead displacement, lead impedance can indicate the quantity of electrical stimulation energy that should be delivered to the target neural tissue to provide corrective adjustment. Hence, a change in impedance or morphology of an impedance curve may be used in a feedback loop to indicate that the stimulation energy needs to be adjusted and the system can effectively auto correct the magnitude of stimulation energy to maintain a desired therapeutic effect.
Abstract:
A system and method are provided for protecting bio-reactor housing from solar radiation, by applying UV-protective material to an outer surface of a plastic wall of the bio-reactor housing to protect from solar radiation. The housing includes a wall formed of plastic that defines the outer surface. In this manner, the effective life of the housing is extended and the overall cost of generation of photosynthetic biomass is decreased, improving system performance and cost-effectiveness.
Abstract:
A neural stimulation system automatically corrects or adjusts the stimulus magnitude (stimulation energy) in order to maintain a comfortable and effective stimulation therapy. Because the changes in impedance associated with the electrode-tissue interface can indicate obstruction of current flow and positional lead displacement, lead impedance can indicate the quantity of electrical stimulation energy that should be delivered to the target neural tissue to provide corrective adjustment. Hence, a change in impedance or morphology of an impedance curve may be used in a feedback loop to indicate that the stimulation energy needs to be adjusted and the system can effectively auto correct the magnitude of stimulation energy to maintain a desired therapeutic effect.
Abstract:
A neural stimulation system automatically corrects or adjusts the stimulus magnitude (stimulation energy) in order to maintain a comfortable and effective stimulation therapy. Because the changes in impedance associated with the electrode-tissue interface can indicate obstruction of current flow and positional lead displacement, lead impedance can indicate the quantity of electrical stimulation energy that should be delivered to the target neural tissue to provide corrective adjustment. Hence, a change in impedance or morphology of an impedance curve may be used in a feedback loop to indicate that the stimulation energy needs to be adjusted and the system can effectively auto correct the magnitude of stimulation energy to maintain a desired therapeutic effect.
Abstract:
A dry cooling assembly is provided comprising a supporting body of liquid having a temperature higher than ambient temperature, and an inflatable elongated tube at least partially submerged in the supporting body of liquid. The inflatable elongated tube has an upper portion formed at least partially of flexible material and a lower ballast portion formed at least partially of flexible material. The lower ballast portion defines a reservoir containing liquid facilitating ballast. The liquid facilitating ballast is warmed by heat from the supporting body of liquid such that the temperature of the support body of liquid is reduced.
Abstract:
A system and related method for concentrating biological culture and circulating biological culture and process fluid is provided. The system includes a continuous flow separator that removes excess fluid from the culture medium, resulting in a “concentrated medium” of fluid. The concentrated medium is then passed along for further processing to capture the biomass. The overflow, i.e., the extracted fluid, from the continuous flow separator is reintroduced into the container in a manner to circulate the culture medium. Thus, energy from the concentration step is utilized to circulate the culture medium, alleviating the need for significant additional structure for circulating the culture medium. In this manner, the system grows and captures biological material in an energy and capital efficient manner.