Abstract:
A turbomachine casing assembly including a casing adapted to encase an aerofoil structure, the aerofoil structure having a tip, a leading edge and a trailing edge, the casing substantially surrounding the tip of the aerofoil structure, wherein the casing has a set-back portion extending from a position in the region of the leading edge or the trailing edge of the aerofoil structure part way towards a position in the region of the respective other edge and set back from the remainder of the casing away from the aerofoil structure, such that the set-back portion permits a flow over a corresponding portion of the tip of the aerofoil structure.
Abstract:
There is provided a water jet propulsion device 10 for a water vehicle, comprising a main duct 12 having a main inlet 14 that is arranged to be submerged in use and a main outlet 16; a pump disposed between the main inlet 14 and the main outlet 16; and a plurality of injection nozzles 40, 50, 60, 70 each arranged to selectively eject a jet of fluid into a different region A, B, C, D susceptible to cavitation, so as to re-energise the fluid flow in that region.
Abstract:
There is provided a water jet propulsion device 10 for a water vehicle, comprising a main duct 12 having a main inlet 14 that is arranged to be submerged in use and a main outlet 16; a pump disposed between the main inlet 14 and the main outlet 16; and a plurality of injection nozzles 40, 50, 60, 70 each arranged to selectively eject a jet of fluid into a different region A, B, C, D susceptible to cavitation, so as to re-energise the fluid flow in that region.
Abstract:
Actuators utilising shape memory alloy materials are known with regard to gas turbine engines. Such shape memory alloys have been used with respect to deformation provided in vanes and blades as well as nozzle elements in order that variations can be made in engine configuration dependent upon thermal cycling. Unfortunately, pedestals in order to provide spacing between the shape memory alloy and an antagonistic bias has resulted in uneven stress distribution as well as a higher thermal mass for the shape memory alloy. An uneven stress distribution will limit operational life whilst a higher thermal mass will result in slower reaction times. By separation of the shape memory alloy or material from its antagonistic bias through use of a slide element, a reduction in thermal mass is achieved and, more importantly, stress differentiation across the actuator is reduced.
Abstract:
A strain sensor apparatus for a rotatable shaft including an emitter/receiver, a vibration element attached to the shaft and arranged for receiving and reflecting signals to and from the emitter/receiver wherein the vibration element includes asymmetric stiffness properties between a radial and axial and/or circumferential directions relative to a rotational axis of the shaft.
Abstract:
A boundary layer control arrangement comprises a pulse generator communicating with a surface having a fluid boundary layer thereacross. The boundary layer control arrangement further includes a fluid supply means for supplying a fluid to the surface via the pulse generator. The pulse generator is constructed such that fluid acts on the pulse generator to cause the fluid to pulse. Pulsing fluid passes from the pulse generator to the surface.
Abstract:
An arrangement for controlling flow of fluid to a component of a gas turbine engine, the arrangement comprising: a conduit, coupled to a supply of fluid, for providing fluid to the component of the gas turbine engine; a magnetic valve for at least partially restricting the conduit and having a valve member with at least a first configuration in which the conduit is at least partially restricted and a second configuration in which the conduit is relatively open, wherein the configuration of the valve member is controlled by magnetic flux in a magnetic circuit which includes at least one member comprising ferromagnetic material, whereby the configuration is responsive to the temperature of the ferromagnetic material.
Abstract:
An arrangement for controlling flow of fluid to at least one component of a gas turbine engine, the arrangement comprising: a first conduit for providing fluid to the component; a flow valve, for controlling the flow of fluid in the first conduit, having first and second configurations; a second conduit for providing fluid to the flow valve to the control the configuration of the flow valve; and a magnetic valve, for controlling the flow of fluid in the second conduit, having first and second configurations and including at least one ferromagnet forming a portion of a magnetic circuit, whereby the configuration of the magnetic valve depends on the temperature of the ferromagnet; the member comprising ferromagnetic material (68) is thermally coupled to one of the group comprising the fluid in the first conduit (24), the fluid in the second conduit (54) and the component; and the configuration of the flow valve is dependent on the configuration of the magnetic valve.
Abstract:
A gas turbine engine exhaust nozzle arrangement for the flow of exhaust gases therethrough between an upstream end and a downstream end thereof comprising a nozzle and a plurality of tabs which extend in a generally axial direction from a downstream portion of the nozzle wherein the nozzle further comprises an actuation mechanism capable of moving the tabs between a first deployed position, where the tabs interact with a gas stream to reduce exhaust noise thereof, and a second non-deployed position, where the tabs are substantially aerodynamically unobtrusive.
Abstract:
A turbofan gas turbine engine (10) comprises a compressor rotor (24) carrying a plurality of circumferentially spaced radially extending rotor blades (26) and a casing (28) surrounding the compressor rotor (24) and compressor rotor blades (26). A compressor rotor blade tip seal (48) comprises an annular member (30) secured to and arranged within the casing (28). The annular member (40) has a plurality of circumferentially spaced axially extending corrugations (32) and a plurality of radially spaced circumferentially extending corrugations (34). A lining (40) is secured to and arranged within the annular member (30). The lining (40) is spaced radially from the tips (27) of the compressor rotor blades (26) to form a clearance (29). An actuator (56) is provided to move the annular member (30) and lining (40) radially to control the size of the clearance (29).