Abstract:
An optical communications system includes a plurality of optical fiber spans. An optical loss of one of the plurality of optical fiber spans is different from an optical loss of another one of the plurality of optical fiber spans. At least one of the plurality of optical fiber spans includes an optical loss that is greater than or equal to 35 dB and at least one of the plurality of optical fiber spans includes an optical loss that is less than 30 dB. An optical amplification system includes at least one discrete optical amplifier, at least one distributed optical amplifier, and an optical loss element. The optical amplification system has spectral gain that compensates for substantially all losses experienced by the optical signals propagating in the plurality of optical fiber spans.
Abstract:
A dispersion-compensating fiber amplifier having a Raman pumped dispersion-compensating fiber and a distributed optical amplifier. The dispersion-compensating fiber is pumped such that the noise contribution of the dispersion-compensating fiber is reduced.
Abstract:
An optical communications system initiates automatic power reduction by selecting a portion of a Raman optical pumping signal from optical signals propagating on an optical fiber span. A signal related to a magnitude of the selected portion of the Raman optical pumping signal is generated. Power of at least one of the optical data signals and the optical pumping signals propagating in the optical fiber span is reduced in response to the generated signal.
Abstract:
An optical communications system initiates automatic power reduction by selecting a portion of a Raman optical pumping signal from optical signals propagating on an optical fiber span. A signal related to a magnitude of the selected portion of the Raman optical pumping signal is generated. Power of at least one of the optical data signals and the optical pumping signals propagating in the optical fiber span is reduced in response to the generated signal.
Abstract:
An optical communications system includes a plurality of optical fiber spans. An optical loss of one of the plurality of optical fiber spans is different from an optical loss of another one of the plurality of optical fiber spans. At least one of the plurality of optical fiber spans includes an optical loss that is greater than or equal to 35 dB and at least one of the plurality of optical fiber spans includes an optical loss that is less than 30 dB. An optical amplification system includes at least one discrete optical amplifier, at least one distributed optical amplifier, and an optical loss element. The optical amplification system has spectral gain that compensates for substantially all losses experienced by the optical signals propagating in the plurality of optical fiber spans.
Abstract:
An optical supervisory channel includes a transmit path that propagates optical supervisory signals to a high span loss optical fiber span having an optical loss that is greater than 35 dB. A wavelength division multiplexer adds the optical supervisory signals to the high span loss optical fiber span. A second wavelength division multiplexer extracts the optical supervisory signals from the high span loss optical fiber span. A receive path propagates the optical supervisory signals away from the high span loss optical fiber span. The optical supervisory channel also includes a means for reducing a bit error rate of the optical supervisory channel.
Abstract:
An apparatus for measuring the optical-signal-to-noise ratio (OSNR) of an optical system is adapted to function in single channel or in multi-channel wavelength division multiplexed optical communication systems. An optical signal spectrum and a center frequency characterize the optical signals. A narrow-band notch filter, realized by an in-fiber Bragg grating, is utilized to remove a component of the signal so the remaining signal can be measured. When multiple channels are present, a bandpass filter is used to select the part of the multiplexed signal to be measured. Both the narrow-band notch filter and the bandpass filter can be tunable to further extend the capabilities of the system. Two detectors are utilized with the power in the channel being measured by a low-gain detector and the power in the noise being measured by a high-gain detector. A processor receives the detector outputs, calculates OSNR, and controls the tunable components.