Abstract:
A power steering control system is provided. The control system includes an actual module that determines an actual load torque associated with a vehicle chassis. A steering module generates a steering control signal based on the actual load torque.
Abstract:
A method for implementing directional control of a motor vehicle is disclosed. In an exemplary embodiment, the method includes determining whether a failure of a primary steering system of the motor vehicle exists. If a failure of the primary steering system exists, then a yaw moment is created on the vehicle by causing a differential longitudinal force to be applied with respect to a first wheel on one side of the vehicle and a second wheel on an opposite side of the vehicle, thereby causing the vehicle to turn in a commanded direction.
Abstract:
An electric power steering system, comprising: a steering wheel in operable communication with a mechanical linkage; a steering shaft in operable communication with the mechanical linkage, and in operable communication with at least one road wheel; a first transmission in operable communication with the steering shaft; a unidirectional electric motor in operable communication with the first transmission; wherein the electric power steering system is configured such that when the steering wheel is turned in a first direction, the motor's power is transmitted in the first direction to the steering shaft, and when the steering wheel is turned in a second direction, the motor's power is transmitted in the second direction to the steering shaft. A method for providing power assist for an electric power steering system, the method comprising: rotating a first body in a first direction with a unidirectional motor; rotating a second body in a second direction with the unidirectional motor; providing a power assist from the first body when a steering wheel is turned in a first direction; and providing a power assist from the second body when a steering wheel is turned in a second direction.
Abstract:
A power steering control system is provided. The control system includes an actual module that determines an actual load torque associated with a vehicle chassis. A steering module generates a steering control signal based on the actual load torque.
Abstract:
Systems and methods for determining an absolute position of a motor of an active front steering system of the vehicle are provided. In particular, the systems and methods accurately determine an absolute position of the motor upon startup of the active front steering system.
Abstract:
Disclosed is a method for assisting the parking of a vehicle. The method includes determining a vehicle position relative to an obstacle. When the relative position meets a first set of criteria, a first torque pulse is delivered to the steering wheel in the first direction to cue an operator of the vehicle to turn the steering wheel in the first direction. When the relative position meets a second set of criteria, a second torque pulse is delivered to the steering wheel in the second direction, opposite to the first direction to cue the operator to turn the steering wheel in the second direction. A system for assisting the parking of a vehicle is also disclosed.
Abstract:
A steering control method is provided. The method includes determining a dynamic load on a steering system based on a dynamic model; and controlling the steering system based on the dynamic load.
Abstract:
Disclosed herein is steer-by-wire control systems comprising: a road wheel unit responsive to a road wheel command signal including a road wheel position sensor and a road wheel force sensor. The steer-by-wire control system also includes a steering wheel unit responsive to a steering wheel torque command signal, including a steering wheel position sensor and a torque sensor. The steer-by-wire control system further includes a vehicle speed sensor, and a master control unit operatively connected to the vehicle speed sensor, the steering wheel unit, and the road wheel unit. The steering wheel unit is also responsive to the steering wheel position signal.
Abstract:
A steering control method is provided. The method includes determining a dynamic load on a steering system based on a dynamic model; and controlling the steering system based on the dynamic load.
Abstract:
A steering system with reduced coupling between a position overlay unit and a torque overlay unit may include a remote valve assembly for controlling a hydraulic assist force or an electric motor for providing torque overlay and electric assist to a rack of a rack and pinion steering system. In one embodiment, the position overlay unit may provide the assist force and the torque overlay unit may provide a motor command signal to the motor of a differential positioned on a steering shaft. In another embodiment, the position overlay unit may provide the motor command signal and the torque overlay unit may provide the assist force. In either embodiment, the position overlay unit may include variable ratio gain that uses a position signal to output a variable ratio command.