Abstract:
A system and a method of controlled electrochemical power generation are disclosed. The system includes an electrochemical cell comprising an alkali metal anode, a cathode initially spaced about 10-25 mils from the anode to define a flow channel, an electrolyte comprising an aqueous solution of the hydroxide of the alkali metal and, for example, a separator system adapted for providing a substantially uniform pattern of flow of the electrolyte through the flow channel is utilized in a system and method of controlled power generation. Flow control valves may, for example, be used to control the volumetric flow rate of the electrolyte through the flow channel thereby attaining substantially uniform voltage from the cell.
Abstract:
Tris-tetrafluorammonium hexafluoraluminate, (NF.sub.4).sub.3 AlF.sub.6, a new compound, is synthesized by forming a mixture of solid aluminum trichloride in a solution of a molar excess tetrafluorammonium bifluoride in anhydrous hydrogen fluoride, at a temperature of about -78.degree. C. or less. The mix is then rapidly heated to a temperature of about 40.degree. C. to the decomposition temperature of the product until all the solids dissolve. The solution containing the dissolved aluminum trichloride is evaporated under vacuum conditions to cause crystallization of (NF.sub.4).sub.3 AlF.sub.6.
Abstract:
The compound NF.sub.4 MF.sub.6 where M is a Group V metalloid is reacted with a fluoride of sodium to yield tetrafluorammonium bifluoride in solution with hydrogen fluoride and a precipitate of the formula NaMF.sub.6. The preferred metaloid is antimony. The formed tetrafluorammonium bifluoride may be converted to NF.sub.4 BF.sub.4 by reaction with BF.sub.3.