摘要:
A database rollback processor allows rollback, or rewind, of the data and metadata to a point at which a failover or other metadata change occurred, therefore “rewinding” the metadata to a previous consistent point. The rollback processor identifies transaction entries in a redo log resulting in changes to the metadata. The changes are identified backward to a target recovery time. Transactions affecting the metadata are stored in a stack. The transactions are then backed out of the metadata according to the stack to restore the metadata to the state at the target recovery time. Data changes from the redo log may then be applied to the corresponding metadata as it existed at the target recovery time. Since the target recovery time is not bound by the timing of the snapshots, but rather may be at an arbitrary point chosen as the target recovery time, a failover, replication or recovery operation need not rely on the snapshot time.
摘要:
Computer-implemented methods and computer systems for automatically managing stored checkpoint data are described. The method includes accessing a first user defined time period. The first user defined time period is related to a plurality of stored checkpoint data, and each checkpoint data of the plurality of stored checkpoint data has an associated storage time. Further, the method includes identifying a first set of checkpoint data having storage times that are within the first user defined time period. Moreover, the method includes identifying a second set of checkpoint data having storage times that are older than the first user defined time period. In addition, the method includes pruning the second set of checkpoint data according to a user specified process in proportion to storage time of each checkpoint data of the second set of checkpoint data. The older stored checkpoint data is more heavily pruned over recent stored checkpoint data.
摘要:
A system and method for efficiently sharing Large Objects (LOBs) is disclosed. Historical records (e.g., redo logs) are kept in which a marker is placed prior to the LOB. The marker includes identifying information, such as the row-column intersection. Using the identifying information in the marker, the LOB may be shared with other systems without staging the LOB at a source database system, prior to transporting the LOB from the source database system to the destination database system. Additionally, using the identifying information, the LOB may be accessed and manipulated prior to being consumed at the destination system.
摘要:
A method and apparatus for applying changes to a standby database in real-time is provided. According to one aspect, a change is applied to data contained in a standby database. The standby database functions as a replica of a primary database. The primary database has a current online redo log file to which a particular redo block was written. According to one aspect, prior to the archiving of the current online redo log file, the particular redo block is received at a process associated with the standby database. A change indicated by the particular redo block is applied to the data contained in the standby database.
摘要:
A method and system that annotates a redo log to provide information concerning the execution of a procedure at a primary database. The annotations include entry and exit markers that indicate the beginning and the end of the execution along with any arguments passed to the procedure, and whether the execution of the procedure was successful. At the standby database, these markers are used to create a logical transaction associated with the procedure. The operations performed by the procedure are grouped into individual transactions, and these individual transactions are grouped as belonging to the logical transaction. If the execution of the procedure was successful at the primary database, then the individual transactions are discarded, and the logical transaction is applied by executing the procedure at the standby database. If the execution of the procedure failed at the primary database, then the individual transactions and the logical transaction are discarded.
摘要:
A database rollback processor allows rollback, or rewind, of the data and metadata to a point at which a failover or other metadata change occurred, therefore “rewinding” the metadata to a previous consistent point. The rollback processor identifies transaction entries in a redo log resulting in changes to the metadata. The changes are identified backward to a target recovery time. Transactions affecting the metadata are stored in a stack. The transactions are then backed out of the metadata according to the stack to restore the metadata to the state at the target recovery time. Data changes from the redo log may then be applied to the corresponding metadata as it existed at the target recovery time. Since the target recovery time is not bound by the timing of the snapshots, but rather may be at an arbitrary point chosen as the target recovery time, a failover, replication or recovery operation need not rely on the snapshot time.
摘要:
The present invention is directed to a method and mechanism for encoding multiple virtual tables into one or more source tables. An aspect of the invention is directed to the access of a virtual table virtual table without requiring separate entries for the virtual table in the meta-data of a database system. Another aspect of the invention is directed to a virtual table that has different column signatures than its underlying source table(s).
摘要:
A quorumless network cluster provides a highly available system by addressing the partition-in-space and partition-in-time problems in network clusters. In a particular solution, a cluster manager (CM) can use disk based messaging to manage the operation of the cluster. Each node within the cluster must have access to a shared disk to operate within the cluster. A particular methodology can operate the cluster in a closed loop between nodes 1 to N. If a node fails to receive a heartbeat message from its predecessor in the loop, it initiates a cluster reconfiguration by sending a reconfiguration message to each other node in the cluster.
摘要:
Techniques for making light-weight checkpoints in logs of streams of transactions and for extending the logs from the checkpoints. The state saved in the light weight checkpoint need only include the state of all transactions that are active at a prior point in the log and are still active at the checkpoint. A log is extended from the checkpoint by processing new transactions in the transaction stream beginning at the prior point to produce the extending log. When the checkpoint is reached, the state saved at the checkpoint is used to continue to produce the extending log. Techniques are further disclosed for selecting points in the stream of transactions at which the checkpoints may be made and for determining the distance between checkpoints. As disclosed, the log in which the checkpoints are used is a logical log made from a physical log produced by a relational database system. The logical log may be used for replication and for data mining.
摘要:
The present invention is directed to a method and mechanism for accessing recovery log information in a database system. The data stored in the recovery log is presented as a relational database “view,” which can be queried and accessed using relational database statements even though the underlying recovery log data may be stored in a non-relational format. According to an aspect of the invention, the recovery log data is thus encapsulated by the view presented to users of that data.