Abstract:
An apparatus and a method for manufacturing semiconductor devices implemented with improved steps of forming a sealant resin layer on the surface of a wafer substrate provided thereon with protruded electrodes. Through process steps of sending driving signals to a stage unit and discharging head based on the comparison with stage position information from stage position detector, and controlling the position of a substrate holding unit with the suction held semiconductor wafer substrate and the scanning movements of discharging mechanism such that minute liquid droplets of raw sealant resin are suitably discharged from discharging head, a raw sealant resin layer is formed on the surface the wafer substrate except the area for forming bump electrodes. The raw sealant resin layer is subsequently hardened to form a sealant resin layer. The reduction of manufacturing costs, and more precise control of location and thickness of the sealant resin become feasible by the method disclosed herein.
Abstract:
A photoelectric converter includes a first pn junction comprised of at least two semiconductor regions of different conductivity types, and a first field-effect transistor including a first source connected with one of the semiconductor regions, a first drain, a first insulated gate and a same conductivity type channel as that of the one of the semiconductor regions. The first drain is supplied with a second potential at which the first pn junction becomes zero-biased or reverse-biased relative to a potential of the other of the semiconductor regions. When the first source turns to a first potential and the one of the semiconductor regions becomes zero-biased or reverse-biased relative to the other semiconductor regions, the first pn junction is controlled not to be biased by a deep forward voltage by supplying a first gate potential to the first insulated gate, even when either of the semiconductor regions is exposed to light.
Abstract:
A semiconductor sensor and a manufacturing method of the same capable of making the specific gravity of a weight part to be greater than that of a weight part made of semiconductor material only is disclosed. The semiconductor sensor includes the weight part, a supporting part, a flexible part, and plural piezoresistive elements. The weight part includes a weight part photosensitive resin layer made of photosensitive resin in which metal particles are included. The supporting part surrounds and is separated from the weight part. The flexible part is provided between the weight part and the supporting part to support the weight part. The flexible part includes a flexible part semiconductor layer where the plural piezoresistive elements are formed. This configuration allows the specific gravity of the weight part photosensitive resin layer greater than that of the weight part semiconductor layer due to the metal particles.
Abstract:
A semiconductor device manufacturing apparatus includes a substrate holding section that holds a semiconductor wafer substrate, a discharge mechanism that discharges liquid drops of metal paste from a discharge nozzle toward a surface of the semiconductor wafer substrate, and a driving mechanism that moves at least one of the substrate holding section and the discharge nozzle. A control section is provided to control the discharge and driving mechanisms so as to adhere the metal paste to the surface. The semiconductor wafer substrate includes a terminal unit formed from two or more electrically separated terminals connected to a device circuit and an insulation layer having an opening in a formation position of the terminal unit. Further, the control section controls the discharge and driving mechanisms to selectively coat the opening of the semiconductor wafer substrate with the metal paste overlying the terminal unit to be electrically connected.
Abstract:
An apparatus and a method for manufacturing semiconductor devices is disclosed for selectively disconnecting a fuse element out of plural fuse elements formed on a semiconductor wafer substrate which is provided with the plural fuse elements and a dielectric layer having at least one opening corresponding to the location for the plural fuse elements. The method includes processing steps implemented onto the wafer substrate, such as (a) forming a layer of etching barrier resin by scanning at least one discharging nozzle for discharging the raw etching barrier resin while suitably discharging droplets of raw etching barrier resin to replenish the opening corresponding to the location of the fuse element not to be disconnected, (b) hardening the raw etching barrier resin to be a layer of etching barrier resin, and (c) the fuse element in the prescribed disconnecting area without overlying portion of the etching barrier resin layer is selectively disconnected by etching using the dielectric layer and the etching barrier resin as a mask.
Abstract:
A semiconductor sensor is disclosed that includes a substrate including at least a semiconductor layer. The substrate includes a weight arranging part in the vicinity of the center of the substrate, a flexible part around the weight arranging part, and supporting parts provided around the flexible part. The semiconductor sensor further includes a weight arranged on the weight arranging part. The weight is made of a material different from that of the weight arranging part and the flexible parts.
Abstract:
An apparatus and a method for manufacturing semiconductor devices is disclosed for selectively disconnecting a fuse element out of plural fuse elements formed on a semiconductor wafer substrate which is provided with the plural fuse elements and a dielectric layer having at least one opening corresponding to the location for the plural fuse elements. The method includes processing steps implemented onto the wafer substrate, such as (a) forming a layer of etching barrier resin by scanning at least one discharging nozzle for discharging the raw etching barrier resin while suitably discharging droplets of raw etching barrier resin to replenish the opening corresponding to the location of the fuse element not to be disconnected, (b) hardening the raw etching barrier resin to be a layer of etching barrier resin, and (c) the fuse element in the prescribed disconnecting area without overlying portion of the etching barrier resin layer is selectively disconnected by etching using the dielectric layer and the etching barrier resin as a mask.
Abstract:
A semiconductor sensor and a manufacturing method of the same capable of making the specific gravity of a weight part to be greater than that of a weight part made of semiconductor material only is disclosed. The semiconductor sensor includes the weight part, a supporting part, a flexible part, and plural piezoresistive elements. The weight part includes a weight part photosensitive resin layer made of photosensitive resin in which metal particles are included. The supporting part surrounds and is separated from the weight part. The flexible part is provided between the weight part and the supporting part to support the weight part. The flexible part includes a flexible part semiconductor layer where the plural piezoresistive elements are formed. This configuration allows the specific gravity of the weight part photosensitive resin layer greater than that of the weight part semiconductor layer due to the metal particles.
Abstract:
A semiconductor sensor is disclosed that includes a substrate including at least a semiconductor layer. The substrate includes a weight arranging part in the vicinity of the center of the substrate, a flexible part around the weight arranging part, and supporting parts provided around the flexible part. The semiconductor sensor further includes a weight arranged on the weight arranging part. The weight is made of a material different from that of the weight arranging part and the flexible parts.
Abstract:
A semiconductor sensor is disclosed that includes a substrate including at least a semiconductor layer. The substrate includes a weight arranging part in the vicinity of the center of the substrate, a flexible part around the weight arranging part, and supporting parts provided around the flexible part. The semiconductor sensor further includes a weight arranged on the weight arranging part. The weight is made of a material different from that of the weight arranging part and the flexible parts.