Abstract:
The present invention is related to a thin heat dissipation device and a method for manufacturing the same. The device of the present invention mainly comprises a hollow body having an enclosed chamber and a working fluid with which the enclosed chamber is filled. The enclosed chamber comprises a first fluid channel and a second fluid channel. The first and second fluid channels extend in the longitudinal direction of the hollow body, are juxtaposed in the width direction of the hollow body and communicated with each other, and an interface between the first fluid channel and the second fluid channel has a height of about 0.1 mm or less. As such, a novel capillary structure which is capable of greatly reducing the entire thickness, enhancing heat transfer efficiency and reducing cost and which is reliable and durable is provided.
Abstract:
An LED lamp has a metal housing, a sintered heat pipe and an LED. The metal housing has an outer surface, an inner surface, a bottom and an opening defined by an inner edge. The sintered heat pipe engages the inner surface and the bottom and the inner edge of the metal housing. The LED is attached to a flattened area of the bottom portion of the sintered heat pipe. The sintered heat pipe rapidly transports heat generated by the LED to the metal housing which then transfers heat to the environment. The sintered heat pipe makes effective heat transportation possible and allows the use of high-power LEDs or multiple LED's within one lamp.
Abstract:
A sintered heat pipe, a manufacturing method thereof and a manufacturing method for a groove tube thereof are provided. The sintered heat pipe includes a groove tube, a sintered powder layer and a working fluid. The groove tube has a plurality of grooves and a first end and a second end opposite to the first end. Each groove extends along an axial direction of the groove tube. The first end and the second end are closed. The sintered powder layer is formed on an inside wall of the groove tube, and the groove tube is filled with the working fluid. The size of each powder in the sintered powder layer is greater than a width of each of the grooves.
Abstract:
A light emitting diode (LED) lamp includes a standardized connector; an LED module; a heat dissipating module; an angle adjusting ring; and an isolating ring. The LED module is electrically connected to the standardized connector and includes a circuit board and at least one LED unit electrically connected to the circuit board. The heat dissipating module is for preventing the LED module from overheating and includes at least one heat pipe on which the LED unit is disposed, a rear heat dissipating shield, a piston module, a transmission module, a heat dissipating fan, and a convection fan. The angle adjusting ring is disposed between the LED module and the standardized connector for rotating the LED module so as to change a light emitting direction of the LED module. The isolating ring is used to avoid the electrical connection of the angle adjusting ring and the standardized connector.
Abstract:
A high-power heat dissipation module for cooling down electronic components comprises a heat exchange element with a sealed cavity, in which a powder sintering portion and a working liquid is provided. The heat exchange element further has a flat section for mounting the electronic component, and a fixing structure. The heat dissipation module further comprises a heat sink with a central hole portion and a heat dissipation structure around the central hole portion. The heat generated by the electronic component is transferred to the heat sink by the heat exchange element, and then quickly dissipated into the air surrounding by the heat dissipation structure. The heat dissipation modules can handle the heat dissipation task for the electronic components with a power of 100 Watts or more and are suitable for cooling high-power electronic components.
Abstract:
A light emitting diode (LED) lamp including a connector, an LED module, an angle adjusting ring, an isolating ring, and a heat dissipating module is provided. The LED module is electrically connected to the connector and has at least one LED unit. The angle adjusting ring is disposed between the LED module and the connector for rotating the LED module, and includes at least one locking element for fixing the LED module on the connector. The isolating ring is disposed between the connector and the angle adjusting ring. The heat dissipating module is in contact with the LED module for preventing the LED module from overheating. The heat dissipating module includes at least one heat pipe and a plurality of fins connecting to the at least one heat pipe, where the at least one LED unit is disposed on the at least one heat pipe.
Abstract:
An LED lamp has a base, a tubular conductor, a bulb and at least one LED. The base is metallic and has an electrical connector. The tubular conductor is filled with a fluid and mounted on the base and has a distal end and a proximal end. The bulb is pellucid and connected to the base. The at least one LED is mounted on the distal end of the tubular conductor and electrically connected to the connector of the base. The fluid in the tubular conductor may vaporize close to operating temperatures of the LED so transports heat away from the LED quickly and efficiently so allowing high power or multiple LEDs to be implemented, so improving brightness of the LED lamp and commercial applications.
Abstract:
The invention discloses a replaceable LED street lamp module, including at least one module portion and a clamping sheet set. The module portion includes an LED module, a lens, an inner radiator, an outer radiator and a heat pipe set, the inner radiator and the outer radiator are sleeved with each other, the heat pipe set is bent and located between the inner radiator and the outer radiator and supports and fixes the LED module, the lens protects the LED module and allows light to be emitted from the LED module, notches are arranged on the outer circle of the outer radiator, and the clamping sheet set is clamped in the notch via two clamping sheets in order to clamp and fix the module portion, thereby being assembled on the opening of the street lamp housing.
Abstract:
A street lamp fixing device includes a LED module, a heat dissipation device, a lamp holder, a metal plate and a connector. The heat dissipation device has a lamp holder mounting recess cooperating with the metal plate for locking the lamp holder. Moreover, an LED street lamp with natural convection devices accelerates the airflow within the street lamp to a faster speed to enhance heat exchange, whereby the lifespan of the LED street lamp is extended and the weight and size of the street lamp are reduced.