Abstract:
Systems and methods for discontinuously applying an insulating primer to a carbon fiber reinforced plastic (CFRP) component are disclosed. In one embodiment, a method for mitigating electrical surface discharges from a CFRP component includes first applying an insulating primer to a metallic component. Next, an insulating primer is applied discontinuously to the CFRP component adjacent the metallic component. The discontinuous application of the insulating primer forms a primed portions and unprimed portions. The unprimed portions are configured to enable electrostatic dissipation.
Abstract:
A lightning-protected conductive composite fuel tank includes a conductive material arrayed on an outer surface to at least partially cover a fastener centerline. Through holes extend along the fastener centerline through the conductive material and the underlying fuel tank shell. These through holes are countersunk into the fuel tank shell to a depth such that a fastener in a through hole will avoid electrical continuity or communication with the conductive material on the fuel tank outer surface. The gap in the countersunk through holes, between the fastener heads and the coextensive outer surface of the fuel tank, is filled with a dielectric or nonconductive material.
Abstract:
An apparatus comprises a wall, an internal structure, and a fastener. The wall has a conductive surface and a countersunk hole. The countersunk hole passes through the internal structure. The fastener has an interference fit within the countersunk hole.
Abstract:
A lightning-protected conductive composite fuel tank includes a conductive material arrayed on an outer surface to at least partially cover a fastener centerline. Through holes extend along the fastener centerline through the conductive material and the underlying fuel tank shell. These through holes are countersunk into the fuel tank shell to a depth such that a fastener in a through hole will avoid electrical continuity or communication with the conductive material on the fuel tank outer surface. The gap in the countersunk through holes, between the fastener heads and the coextensive outer surface of the fuel tank, is filled with a dielectric or nonconductive material.
Abstract:
Systems and methods for discontinuously applying an insulating primer to a carbon fiber reinforced plastic (CFRP) component are disclosed. In one embodiment, a method for mitigating electrical surface discharges from a CFRP component includes first applying an insulating primer to a metallic component. Next, an insulating primer is applied discontinuously to the CFRP component adjacent the metallic component. The discontinuous application of the insulating primer forms a primed portions and unprimed portions. The unprimed portions are configured to enable electrostatic dissipation.
Abstract:
Systems and methods for discontinuously applying an insulating primer to a carbon fiber reinforced plastic (CFRP) component are disclosed. In one embodiment, a method for mitigating electrical surface discharges from a CFRP component includes first applying an insulating primer to a metallic component. Next, an insulating primer is applied discontinuously to the CFRP component adjacent the metallic component. The discontinuous application of the insulating primer forms a primed portions and unprimed portions. The unprimed portions are configured to enable electrostatic dissipation.
Abstract:
A lightning-protected conductive composite fuel tank includes a conductive material arrayed on an outer surface to at least partially cover a fastener centerline. Through holes extend along the fastener centerline through the conductive material and the underlying fuel tank shell. These through holes are countersunk into the fuel tank shell to a depth such that a fastener in a through hole will avoid electrical continuity or communication with the conductive material on the fuel tank outer surface. The gap in the countersunk through holes, between the fastener heads and the coextensive outer surface of the fuel tank, is filled with a dielectric or nonconductive material.
Abstract:
An apparatus comprises a wall, an internal structure, and a fastener. The wall has a conductive surface and a countersunk hole. The countersunk hole passes through the internal structure. The fastener has an interference fit within the countersunk hole.
Abstract:
Systems and methods for discontinuously applying an insulating primer to a carbon fiber reinforced plastic (CFRP) component are disclosed. In one embodiment, a method for mitigating electrical surface discharges from a CFRP component includes first applying an insulating primer to a metallic component. Next, an insulating primer is applied discontinuously to the CFRP component adjacent the metallic component. The discontinuous application of the insulating primer forms a primed portions and unprimed portions. The unprimed portions are configured to enable electrostatic dissipation.
Abstract:
A lightning-protected conductive composite fuel tank includes a conductive material arrayed on an outer surface to at least partially cover a fastener centerline. Through holes extend along the fastener centerline through the conductive material and the underlying fuel tank shell. These through holes are countersunk into the fuel tank shell to a depth such that a fastener in a through hole will avoid electrical continuity or communication with the conductive material on the fuel tank outer surface. The gap in the countersunk through holes, between the fastener heads and the coextensive outer surface of the fuel tank, is filled with a dielectric or nonconductive material.