摘要:
An integrated circuit programmable resistor or programmable capacitor has a floating gate memory cell connected either in series or in parallel to a fixed resistor or a fixed capacitor. The resistance or the capacitance of the floating gate memory cell can be changed by the amount of charge stored on the floating gate which affects the resistance or the capacitance of the channel from which the floating gate is spaced apart. A particular application of the programmable resistor/capacitor is used in a system whereby the resistance or the capacitance can be change or fine tuned as a result of either drift caused by time or by operating conditions such as temperature. Thus, the temperature of the substrate in which the floating gate memory cell is fabricated can be monitored and the resistance or the capacitance of the floating gate memory cell changed dynamically.
摘要:
A first embodiment of an Electrostatic Discharge (ESD) structure for an integrated circuit for protecting the integrated circuit from an ESD signal, has a substrate of a first conductivity type. The substrate has a top surface. A first region of a second conductivity type is near the top surface and receives the ESD signal. A second region of the second conductivity type is in the substrate, separated and spaced apart from the first region in a substantially vertical direction. A third region of the first conductivity type, heavier in concentration than the substrate, is immediately adjacent to and in contact with the second region, substantially beneath the second region. In a second embodiment, a well of a second conductivity type is provided in the substrate of the first conductivity type. The well has a top surface. A first region of the second conductivity type is near the top surface. A second region of the second conductivity type is in the well, substantially along the bottom of the well. A third region of the first conductivity type, is immediately adjacent to and in contact with the second region, substantially beneath the second region. A fourth region of the first conductivity type is in the well, along the top surface thereof, and spaced apart from the first region. The first region and the fourth region receive the ESD signal.