Abstract:
An airfoil for a gas turbine engine includes a root, a tip, a leading edge, a trailing edge, and opposed pressure and suction sidewalls extending generally along a radial axis. The airfoil includes a tip cap extending between the pressure and suction sidewalls; and spaced-apart suction-side and pressure-side tip walls extending radially outward from the tip cap to define a tip cavity therebetween. The pressure-side tip wall includes a continuously concave curved arcuate portion, at least a section of which extends circumferentially outward from a radial axis of the airfoil.
Abstract:
A method facilitates fabricating an airfoil for use with a turbine blade. The method comprises forming a substantially solid ceramic airfoil core, inserting the core into a die and casting the airfoil with a pressure side wall and a suction side wall connected together at a leading edge and a trailing edge, such that a plurality of first trailing edge slots and at least one second trailing edge slot extend from the trailing edge along the pressure side wall, wherein the second trailing edge slot has a length, measured between an inlet and an exit of the slot, that is longer than a corresponding length of each of the plurality of first trailing edge slots.
Abstract:
A turbine nozzle for a gas turbine engine includes a nozzle segment having an airfoil-shaped vane with a root, a tip, a leading edge, a trailing edge and opposed curved pressure and suction sides. An arcuate inner band segment is attached to the root of the vane. The inner band segment includes an inner flowpath surface bounded at forward and aft ends thereof by a forward-facing surface and an aft-facing surface, respectively. A convex curved blended corner is formed between the inner flowpath surface and the aft-facing surface.