Abstract:
Provided is an apparatus and method for encoding/decoding moving pictures based on adaptive scanning. The moving picture apparatus and method can increase a compression rate based on adaptive scanning by performing intra prediction onto blocks of a predetermined size, and scanning coefficients acquired from Discrete Cosine Transform (DCT) of a residue signal and quantization differently according to the intra prediction mode. The moving picture encoding apparatus includes: a mode selector for selecting and outputting a prediction mode; a predictor for predicting pixel values of pixels to be encoded of an input video based on the prediction mode to thereby output a residue signal block; a transform/quantization unit for performing DCT onto the residue signal block and quantizing the transformed residue signal block; and an encoder for adaptively scanning and encoding the quantized residue signal block based on the prediction mode.
Abstract:
Provided are a method of and apparatus for lossless video encoding and decoding, in which a differential residual block generated by calculating a difference between pixels of a residual block resulting from interprediction is encoded, thereby improving the compression rate. The method of lossless video encoding includes performing interprediction between a reference frame and a current frame in units of a predetermined-size block to generate a predicted block of a current block to be encoded, generating a residual block composed of residual signals corresponding to differences between pixels of the predicted block and the current block, calculating differences between the residual signals of the residual block in a predetermined direction and generating a differential residual block based on the calculated differences, and performing entropy-encoding on the differential residual block.
Abstract:
Provided is an apparatus and method for encoding/decoding moving pictures based on adaptive scanning. The moving picture apparatus and method can increase a compression rate based on adaptive scanning by performing intra prediction onto blocks of a predetermined size, and scanning coefficients acquired from Discrete Cosine Transform (DCT) of a residue signal and quantization differently according to the intra prediction mode. The moving picture encoding apparatus includes: a mode selector for selecting and outputting a prediction mode; a predictor for predicting pixel values of pixels to be encoded of an input video based on the prediction mode to thereby output a residue signal block; a transform/quantization unit for performing DCT onto the residue signal block and quantizing the transformed residue signal block; and an encoder for adaptively scanning and encoding the quantized residue signal block based on the prediction mode.
Abstract:
Provided is an apparatus and method for encoding/decoding moving pictures based on adaptive scanning. The moving picture apparatus and method can increase a compression rate based on adaptive scanning by performing intra prediction onto blocks of a predetermined size, and scanning coefficients acquired from Discrete Cosine Transform (DCT) of a residue signal and quantization differently according to the intra prediction mode. The moving picture encoding apparatus includes: a mode selector for selecting and outputting a prediction mode; a predictor for predicting pixel values of pixels to be encoded of an input video based on the prediction mode to thereby output a residue signal block; a transform/quantization unit for performing DCT onto the residue signal block and quantizing the transformed residue signal block; and an encoder for adaptively scanning and encoding the quantized residue signal block based on the prediction mode.
Abstract:
Provided is an apparatus and method for encoding/decoding moving pictures based on adaptive scanning. The moving picture apparatus and method can increase a compression rate based on adaptive scanning by performing intra prediction onto blocks of a predetermined size, and scanning coefficients acquired from Discrete Cosine Transform (DCT) of a residue signal and quantization differently according to the intra prediction mode. The moving picture encoding apparatus includes: a mode selector for selecting and outputting a prediction mode; a predictor for predicting pixel values of pixels to be encoded of an input video based on the prediction mode to thereby output a residue signal block; a transform/quantization unit for performing DCT onto the residue signal block and quantizing the transformed residue signal block; and an encoder for adaptively scanning and encoding the quantized residue signal block based on the prediction mode.
Abstract:
Video encoding and decoding methods and devices are provided which can efficiently switch a lossy mode and a lossless mode to each other. The video encoding device includes: a prediction section that generates a residual signal which is a difference between an input image and prediction values acquired by performing one or more of temporal prediction and spatial prediction on macro blocks of the input image; a transformation and quantization section that performs or skips transformation and quantization on the residual signal depending on mode information; an entropy-coding section that entropy-codes the residual signal output from the transformation and quantization section to generate a bitstream; a lossless-mode QP range determining section that determines a lossless-mode QP range using an amount of bits generated by the entropy-coding section and a quantization coefficient (QP); and a mode determining section that compares a current QP value with the determined lossless-mode QP range to determine one of a lossy mode and a lossless mode and transmits information on the determined mode to the transformation quantization section. Accordingly, by designating a lossless-mode quantization coefficient range, it is possible to reduce an amount of bits necessary for switching a lossy mode and a lossless mode.
Abstract:
Provided are a method of and apparatus for lossless video encoding and decoding, in which a differential residual block generated by calculating a difference between pixels of a residual block resulting from interprediction is encoded, thereby improving the compression rate. The method of lossless video encoding includes performing interprediction between a reference frame and a current frame in units of a predetermined-size block to generate a predicted block of a current block to be encoded, generating a residual block composed of residual signals corresponding to differences between pixels of the predicted block and the current block, calculating differences between the residual signals of the residual block in a predetermined direction and generating a differential residual block based on the calculated differences, and performing entropy-encoding on the differential residual block.