Abstract:
A satellite tracking system and a method of controlling the same, in which the satellite tracking system comprises an ARGO-M Operation System (AOS) and a Tracking Mount System (TMS). The AOS comprises a time & frequency system configured to include a Global Positioning System (GPS) receiver, and to receive Universal Time Coordinated (UTC), and an Interface Control System (ICS) configured to calculate the orbital position data of a satellite using the UTC and per-satellite estimated orbit data by means of Lagrangian interpolation, and to send a command to track the position of the satellite. The TMS comprises a tracking mount configured to support a telescope that measures distance to the satellite, and to operate in accordance with the position of the satellite, and a servo controller configured to receive the orbital position data of the satellite, to receive the UTC, and to send a command to track the satellite.
Abstract:
The present invention relates to an adaptive optical system using artificial intelligence and not having a deformable mirror, the adaptive optical system being capable of generating an image with no distortion or minimized distortions, without using a surface-deformable reflector which is relatively expensive equipment, and also being capable of generating a high-quality image.
Abstract:
A space weather monitoring system for polar routes includes: a satellite which flies over polar routes; a route-information providing server which receives data collected by the satellite monitoring the polar routes and generates various pieces of information about space weather; a flight vehicle which makes a request for information about the polar routes of the flight to the route-information providing server, and flies over the polar routes based on the received information; and a network which relays data among the satellite, the route-information providing server and the flight vehicle, so that an aurora-distribution map needed for an aircraft flight, an electromagnetic wave absorption map based on the ionosphere, information about space weather, and the situation and forecast of the space weather can be provided to an airline, thereby having effects on allowing the airline to check the information about the space weather in real time and fully considering a user who is unfamiliar to the space weather.
Abstract:
Disclosed is a vacuum wall-through structure to be installed in a hole formed in a wall of a vacuum chamber. The vacuum wall-through structure includes a cable holder that holds a cable at the center thereof and a cable holder cover installed outside the cable holder.
Abstract:
The present invention relates to a beam steering device of a phased array antenna for reducing a grating lobe, and more particularly, to a beam steering device of a phased array antenna for reducing a grating lobe so that grating lobes generated when receiving a signal by rotating an array of a plurality of antenna elements at a predetermined angle during transmission do not overlap each other when receiving the signal through the beam steering device.
Abstract:
A method for re-entry prediction of an uncontrolled artificial space object includes: calculating an average semi-major axis and an argument of latitude by inputting two-line elements or osculating elements of an artificial space object at two different time points; calculating an average semi-major axis, argument of latitude, and atmospheric drag at a second time point; estimating an optimum drag scale factor while changing the drag scale factor; predicting the time and place of re-entry of an artificial space object into the atmosphere by applying the estimated drag scale factor. Here, orbit prediction is performed by using a Cowell's high-precision orbital propagator using numerical integration from the second time point to a re-entry time point.
Abstract:
A method of determining a precise orbit of a satellite through estimation of a parallactic refraction scale factor is proposed, the method including inputting an initial estimate including initial orbit information of a satellite with respect to an observation epoch and the parallactic refraction scale factor; performing orbit propagation using a high-precision orbit propagator by applying a dynamics model; performing observer-centered satellite optical observation modeling including the parallactic refraction scale factor; calculating an observation residual between actual optical observation data and observation data calculated via the observation modeling reflecting the parallactic refraction; and precisely determining the orbit of the satellite by estimating the parallactic refraction scale factor and a satellite state vector using a batch least square estimation algorithm.
Abstract:
A satellite tracking system and a method of controlling the same, in which the satellite tracking system comprises an ARGO-M Operation System (AOS) and a Tracking Mount System (TMS). The AOS comprises a time & frequency system configured to include a Global Positioning System (GPS) receiver, and to receive Universal Time Coordinated (UTC), and an Interface Control System (ICS) configured to calculate the orbital position data of a satellite using the UTC and per-satellite estimated orbit data by means of Lagrangian interpolation, and to send a command to track the position of the satellite. The TMS comprises a tracking mount configured to support a telescope that measures distance to the satellite, and to operate in accordance with the position of the satellite, and a servo controller configured to receive the orbital position data of the satellite, to receive the UTC, and to send a command to track the satellite.
Abstract:
Provided are a precision alignment device of an optical component and a method of using the device. The device includes a location fixing unit inserted and coupled to a pin hole on an optical table, closely attached to an optical mount, and fixes a location of the optical component, and a bumper including a penetration hole formed to allow the location fixing unit to penetrate to be coupled thereto, the bumper having a thickness formed in a lateral direction to maintain a certain distance between the location fixing unit and the optical mount when at least one side is closely attached to the optical mount. A location of the optical mount is determined while coupling the bumper to the location fixing unit.
Abstract:
A method of determining a precise orbit of a satellite through estimation of a parallactic refraction scale factor is proposed, the method includes inputting an initial estimate including initial orbit information of a satellite with respect to an observation epoch and the parallactic refraction scale factor; performing orbit propagation using a high-precision orbit propagator by applying a dynamics model; performing observer-centered satellite optical observation modeling including the parallactic refraction scale factor; calculating an observation residual between actual optical observation data and observation data calculated via the observation modeling reflecting the parallactic refraction; and precisely determining the orbit of the satellite by estimating the parallactic refraction scale factor and a satellite state vector using a batch least square estimation algorithm.