Abstract:
A laser induced thermo-acoustical system has a waveguide for propagating laser radiation to an absorbing layer of a tip. The tip has an absorbing layer serving to absorb the laser radiation propagating through the waveguide. The absorbing layer has such an absorption coefficient that upon absorbing the laser radiation the absorbing layer heats up to boil a quantity of a liquid when the tip is surrounded by the liquid. A laser induced thermo-acoustical method calls for providing a waveguide for propagating laser radiation to the absorbing layer of the tip to be at least partially absorbed by the absorbing layer and to boil a quantity of the liquid surrounding the tip and generating the stream of liquid. The laser induced thermo-acoustical streaming of the liquid is used, in particular, for the treatment of a root canal and periodontal pockets.
Abstract:
A laser induced thermo-acoustical system has a waveguide for propagating laser radiation to an absorbing layer of a tip. The tip has an absorbing layer serving to absorb the laser radiation propagating through the waveguide. The absorbing layer has such an absorption coefficient that upon absorbing the laser radiation the absorbing layer heats up to boil a quantity of a liquid when the tip is surrounded by the liquid. A laser induced thermo-acoustical method calls for providing a waveguide for propagating laser radiation to the absorbing layer of the tip to be at least partially absorbed by the absorbing layer and to boil a quantity of the liquid surrounding the tip and generating the stream of liquid. The laser induced thermo-acoustical streaming of the liquid is used, in particular, for the treatment of a root canal and periodontal pockets.
Abstract:
An apparatus for treatment of dental tissue has a first laser source optically connected to a first channel and the same first laser source optically connected to a second channel. The second laser source is optically connected to the first channel. That second laser source is designed to be pumped via the first channel by the diode laser to generate a power of radiation sufficient to cut hard dental tissue. The second channel is connected to a device for treatment of soft dental tissue and is designed to transmit radiation sufficient for treating soft dental tissue. The first laser source can be a diode laser designed to emit radiation of a wavelength selected from a range of 700 nm to 2700 nm. The second laser source can be a solid-state or fiber laser designed to emit a wavelength from a range of 2700 nm to 3000 nm.