摘要:
The present invention is directed to expression vectors and yeast cells transformed therewith containing a first heterologous nucleotide sequence which codes for a G protein-coupled receptor, for example, the somatostatin receptor, and a second nucleotide sequence which codes for all or a portion of a G protein &agr;&bgr;&ggr; complex. Said heterologous protein is physically expressed in a host cell membrane in proper orientation for both stereoselective binding of ligands, as well as functional interaction with G proteins on a cytoplasmic side of the cell membrane. In some embodiments, a nucleotide sequence encoding a heterologous or chimeric G&agr; protein is expressed in conjunction with nucleotide sequences from the yeast G protein &bgr;&ggr; subunits. A second aspect of the present invention provides expression vectors and yeast cells transformed therewith encoding chimeric yeast/heterologous G protein coupled receptors. A third aspect of the present invention is directed to methods of assaying compounds using such expression constructs and yeast cell expression systems to determine the effects of ligand binding to the heterologous receptors expressed in the systems.
摘要:
A first aspect of the present invention is directed to a transformed yeast cell containing a first heterologous DNA sequence which codes for a G protein-coupled receptor, for example, the somatostatin receptor, and a second heterologous DNA sequence which codes for a G protein .alpha. subunit or portions thereof fused to DNA sequences from the yeast G protein a subunit. A second aspect of the present invention is a transformed yeast cell containing a heterologous DNA sequence which codes for a G protein coupled receptor. A third aspect of the present invention is a method of assaying compounds to determine effects on cell growth.
摘要:
The present invention is directed to expression vectors and yeast cells transformed therewith containing a first heterologous nucleotide sequence which codes for a G protein-coupled receptor, for example, the somatostatin receptor, and a second nucleotide sequence which codes for all or a portion of a G protein αβγ complex. Said heterologous protein is physically expressed in a host cell membrane in proper orientation for both stereoselective binding of ligands, as well as functional interaction with G proteins on the cytoplasmic side of the cell membrane. In some embodiments, a nucleotide sequence encoding a heterologous or chimeric Gα protein is expressed in conjunction with nucleotide sequences from the yeast G protein βγ subunits. A second aspect of the present invention provides expression vectors and yeast cells transformed therewith encoding chimeric yeast/heterologous G protein coupled receptors. A third aspect of the present invention is directed to methods of assaying compounds using such expression constructs and yeast cell expression systems to determine the effects of ligand binding to the heterologous receptors expressed in the systems.
摘要:
A first aspect of the present invention is directed to a transformed yeast cell containing a first heterologous DNA sequence which codes for a G protein-coupled receptor, for example, the somatostatin receptor, and a second heterologous DNA sequence which codes for a G protein a subunit or portions thereof fused to DNA sequences from the yeast G protein in a subunit. A second aspect of the present invention is a transformed yeast cell containing a heterologous DNA sequence which codes for a G protein coupled receptor. A third aspect of the present invention is a method of assaying compounds to determine effects on cell growth.
摘要:
Expression vectors and yeast cells that contain a heterologous G protein-coupled receptor gene and a gene mutation that causes increased sensitivity to receptor activation or a gene mutation that permits transcriptional activation of pheromone-responsive genes without cell cycle arrest. Methods of making the yeast cells.