Abstract:
An embodiment of the present invention discloses a microwave relay receiving method and apparatus, a microwave relay transmitting method and apparatus, and a microwave relay node. The embodiment of the present invention relates to the field of communications technologies and is invented to enable free scheduling of microwave signals at low costs. The microwave relay receiving method includes: receiving a microwave signal; separating the microwave signal to obtain service information at an intermediate frequency band and control information at a low frequency band and sending the separated service information to a switch matrix; and sending the control information to the switch matrix so that a corresponding switch in the switch matrix is turned on and the service information is transmitted by the turned on switch.
Abstract:
The present invention provides a method, apparatus and system for transmitting and receiving a client signal. The method for transmitting a client signal includes, at the transmitting end, mapping a client signal to be transmitted to a corresponding low-order Optical Channel Data Unit (ODU) in a low-order ODU set, wherein low-order ODUs in the low-order ODU set having rates increased in order, and having rate correspondence relations with the client signals; mapping the low-order ODU to a timeslot of a high-order Optical Channel Payload Unit (OPU) in a high-order OPU set; and adding overheads to the high-order OPU to form an Optical Channel Transport Unit (OTU), and transferring the OTU to an Optical Transport Network (OTN) for transmission.
Abstract:
A method for transporting a client signal in an optical transport network (OTN) includes steps as follows. A byte number Cn of a client signal transported in a current OTN frame period is generated according to a client signal clock and a system clock. If the Cn of the current OTN frame falls in a certain range, a predetermined area in an optical channel payload unit-k (OPUk) overhead field is identified as normal, and the Cn is filled in the OPUk overhead field of the current OTN frame. Therefore, the reliability for transporting the client byte number can be improved and an OPUk overhead byte space needed for transporting the client signal byte number can be saved.
Abstract:
An embodiment of the present invention discloses a microwave relay receiving method and apparatus, a microwave relay transmitting method and apparatus, and a microwave relay node. The embodiment of the present invention relates to the field of communications technologies and is invented to enable free scheduling of microwave signals at low costs. The microwave relay receiving method includes: receiving a microwave signal; separating the microwave signal to obtain service information at an intermediate frequency band and control information at a low frequency band and sending the separated service information to a switch matrix; and sending the control information to the switch matrix so that a corresponding switch in the switch matrix is turned on and the service information is transmitted by the turned on switch.
Abstract:
The embodiments of the present invention relate to the field of communications technologies, and disclose a lossless adjustment method of ODUflex channel bandwidth and an ODUflex channel. The lossless adjustment method includes: respectively adjusting, according to bandwidth adjustment indication request information, a time slot occupied by an ODUflex frame in a higher order optical channel data unit at an egress side of each network node on an ODUflex channel; and adjusting, according to rate adjustment indication information, a transmission rate of the ODUflex frame of each network node on the ODUflex channel, to enable the transmission rate of each network node on the ODUflex channel to be unified.
Abstract:
The present invention provides a method, apparatus and system for transmitting and receiving a client signal. The method for transmitting a client signal includes, at the transmitting end, mapping a client signal to be transmitted to a corresponding low-order Optical Channel Data Unit (ODU) in a low-order ODU set, wherein low-order ODUs in the low-order ODU set having rates increased in order, and having rate correspondence relations with the client signals; mapping the low-order ODU to a timeslot of a high-order Optical Channel Payload Unit (OPU) in a high-order OPU set; and adding overheads to the high-order OPU to form an Optical Channel Transport Unit (OTU), and transferring the OTU to an Optical Transport Network (OTN) for transmission.
Abstract:
A method for transmitting client signals in an OTN includes: obtaining the client signals, and determining an OPUk TS in an OPUk according to the client signals; mapping the client signals to the OPUk TS in an agnostic CBR mapping mode; and adding an overhead into the OPUk, and sending the OPUk with the added overhead to the OTN. A device for transmitting client signals and a device for receiving client signals in an OTN are disclosed.
Abstract:
The embodiments of the present invention relate to the field of microwave communication technologies, and disclose a method, an apparatus, and a system for scheduling a service on a microwave link. In order to overcome the problem that the data unit of the TDM service and the data unit of the packet service cannot be scheduled uniformly in the prior art, the method for scheduling a service on a microwave link provided in the embodiments of the present invention includes: receiving a radio transport unit that carries at least one radio data unit, where the radio data unit carries priority information; and scheduling the radio data unit according to the priority information of the radio data unit. The present invention enables uniform scheduling of the data unit of the TDM service and the data unit of the packet service.
Abstract:
Methods, apparatuses and systems for transporting multi-lane Ethernet signal are disclosed. The method primarily includes utilizing a plurality of timeslot channels and justification bytes configured in the OPUk-Xv to build up multiple virtually concatenated transport lanes; and transporting a lane of independent Ethernet data via each lane in the multiple transport lanes. Such schema allows to transparently transport multi-lane Ethernet signal over OTN and addresses the uncontrollability of the time delay occurred when multi-lane Ethernet signal traverse over OTN. In addition, the problem that the frequency offset does not fit the IEEE definition of the Ethernet interface is solved.
Abstract:
Embodiments of the present invention disclose a method for the generic mapping procedure GMP mapping, a method for GMP demapping, and an apparatus. The method for mapping includes: carrying, in an overhead GMP OH of the ith GMP block container, information about a TS that needs to be occupied by the (i+n)th GMP block container; adjusting the (i+n)th GMP block container according to the information about the TS that needs to be occupied by the (i+n)th GMP block container; performing, according to the adjusted (i+n)th GMP block container, the GMP mapping on customer service data to be sent, so that a receive end is capable of adopting a corresponding demapping manner according to a change of the block container, which implements lossless mapping and demapping processing by adopting a GMP for a variable block container.