Abstract:
A method of manufacturing a photomask is described. The graphic data of the photomask are provided, and than an optical proximity correction is performed to the graphic data. A process rule check is then performed to the graphic data with the optical proximity correction. When at least one failed pattern not passing the process rule check is found in the graphic data, a repair procedure is performed only to the failed pattern so that the failed pattern can pass the process rule check. The patterns of the photomask are then formed according to the corrected and repaired graphic data.
Abstract:
A method of manufacturing a photomask is described. The graphic data of the photomask are provided, and than an optical proximity correction is performed to the graphic data. A process rule check is then performed to the graphic data with the optical proximity correction. When at least one failed pattern not passing the process rule check is found in the graphic data, a repair procedure is performed only to the failed pattern so that the failed pattern can pass the process rule check. The patterns of the photomask are then formed according to the corrected and repaired graphic data.
Abstract:
A method of an in situ cleaning of an objective lens of a semiconductor apparatus includes placing a cleaning wafer having a detergent layer on a scanning stage of the semiconductor apparatus. A cleaning composition in the detergent layer is dissolved by using an immersion liquid (water), so that the cleaning composition reacts with the contaminants on the objective lens. Thereafter, the objective lens is rinsed with another solvent.
Abstract:
A method of manufacturing a photomask is described. The graphic data of the photomask are provided, and than an optical proximity correction is performed to the graphic data. A process rule check is then performed to the graphic data with the optical proximity correction. When at least one failed pattern not passing the process rule check is found in the graphic data, a repair procedure is performed only to the failed pattern so that the failed pattern can pass the process rule check. The patterns of the photomask are then formed according to the corrected and repaired graphic data.
Abstract:
A method of manufacturing a photomask is described. The graphic data of the photomask are provided, and than an optical proximity correction is performed to the graphic data. A process rule check is then performed to the graphic data with the optical proximity correction. When at least one failed pattern not passing the process rule check is found in the graphic data, a repair procedure is performed only to the failed pattern so that the failed pattern can pass the process rule check. The patterns of the photomask are then formed according to the corrected and repaired graphic data.
Abstract:
A method for correcting a photomask pattern is disclosed. The correction method determines a layout condition according to the space and line width of a layout pattern. The layout condition is used to determine the type of optical proximity correction to be used for a layout pattern in order to generate a correction pattern, and the correction pattern is compared with a predetermined specification. Furthermore, a modified-rule optical proximity correction table is employed to correct the special layout pattern. Therefore, the fidelity correction may be easily implemented.
Abstract:
A method of manufacturing a photomask is described. The graphic data of the photomask are provided, and than an optical proximity correction is performed to the graphic data. A process rule check is then performed to the graphic data with the optical proximity correction. When at least one failed pattern not passing the process rule check is found in the graphic data, a repair procedure is performed only to the failed pattern so that the failed pattern can pass the process rule check. The patterns of the photomask are then formed according to the corrected and repaired graphic data.
Abstract:
A customer illumination aperture (CIA) structure for lithographic exposure is disclosed, including a central part and at least one off-axis part around the central part. The off-axis part of the CIA is disposed in a symmetric manner with respect to the central part.
Abstract:
A method of manufacturing a photomask is described. The graphic data of the photomask are provided, and than an optical proximity correction is performed to the graphic data. A process rule check is then performed to the graphic data with the optical proximity correction. When at least one failed pattern not passing the process rule check is found in the graphic data, a repair procedure is performed only to the failed pattern so that the failed pattern can pass the process rule check. The patterns of the photomask are then formed according to the corrected and repaired graphic data.