Abstract:
A process for the catalytic gas-phase oxidation of propene or isobutene to acrolein or methacrolein in a tubular fixed bed reactor or catalytically active oxides with a .gtoreq.90% conversion of the initial olefin on a single passage, wherein the temperature of the gases containing the reactants in the direction of flow along the tubes from their entrance until the conversion of the initial olefin is from 30 to 70% is from 360.degree. to 420.degree. C. and is then adjusted to from 360.degree. to 300.degree. C. until the conversion of the initial olefin is from 80 to 90% and is thereafter maintained at from 330.degree. to 390.degree. C. until the gases emerge from the tubes, is described.
Abstract:
Method for the selective elimination of nitrogen oxides from flue gases, especially from the flue gases from furnaces.For the denitration, the flue gases are brought together with catalytically active solid bodies through which the flue gases can flow on account of their structural makeup and/or because they are in the form of a loose bed. A reducing agent, mixed if desired with a carrier gas, is brought in contact with the catalytically active solid or sections thereof, in alternation with the flue gases containing the nitrogen oxides that are to be reduced.
Abstract:
Hard, fracture-resistant catalysts are prepared from zeolites of the pentasil family by a process in which water, organic additives which increase the viscosity and a silicate are added to the zeolite powder, and the material is molded, dried and calcined.The fracture-resistant zeolites obtained are used as catalyst carriers.