摘要:
The present application includes a system and method that provisions at least two (2) receivers in a topology that allows each receiver to acquire wireless communication signals through different diverse antenna fields. Each receiver acquires the signal, and demodulates, decodes and sends data to the data terminal component. The data terminal component resolves packet alignment issues and selects the best data. This improves system reliability and reduces the system susceptibility to data corruption or loss of data due to signal fading that might occur on a single antenna field. Provisioning a wireless system in this manner reduces the likelihood that the same fading phenomena, resulting from either multipath and/or shadowing affects, impair signal reception causing data dropout or loss of data.
摘要:
The present application includes a system and method that provisions at least two (2) receivers in a topology that allows each receiver to acquire wireless communication signals through different diverse antenna fields. Each receiver acquires the signal, and demodulates, decodes and sends data to the data terminal component. The data terminal component resolves packet alignment issues and selects the best data. This improves system reliability and reduces the system susceptibility to data corruption or loss of data due to signal fading that might occur on a single antenna field. Provisioning a wireless system in this manner reduces the likelihood that the same fading phenomena, resulting from either multipath and/or shadowing affects, impair signal reception causing data dropout or loss of data.
摘要:
The present invention provides a system and method of increasing the sampling rate for MR data acquisition. By implementing ensemble sampling techniques, the present invention provides higher data sampling rates that are useful for several MR data acquisition applications including Echo Planar Imaging, Functional Magnetic Resonance Imaging, and Sensitivity Encoding Imaging (SENSE) techniques. By multiplying an MR signal by a series of pure sinusoids having the same frequency but shifted by an incremental phase, the MR signal may be separated into a number of channels which can be sampled at lower rates by analog-to-digital converters. The output from the converters may then be reconstructed using one of a number of interpolation techniques to create a single digital channel with increased bandwidth. The single channel with increased bandwidth may then be used to acquire MR data with an improved sampling rate.
摘要:
A system and method for MR imaging is disclosed that includes an MRI system having a plurality of gradient coils positioned about a bore of a magnet to impress a polarizing magnetic field and an RF transceiver system and an RF switch controlled by a pulse module to transmit RF signals to an RF coil assembly to acquire MR images. A computer is included that is programed to generate a motion waveform from a physiological signal acquired from a subject to be imaged and compare a shape of the motion waveform to a shape of a reference motion waveform to identify points in the motion waveform corresponding to a periodic complex. The computer is also programed to trigger MR data acquisition from the subject upon identification of the periodic complex.