Abstract:
Disclosed herein are methods for detecting a water leak in a locomotive engine cooling system comprising numerous components, each being a potential source of leakage of water. The method typically comprises performing at least one inspection providing an indication of a water leak from an engine cooling system of the locomotive. The step of performing at least one inspection may comprise at least one of several steps including performing a visual inspection to determine if water is leaking from a portion of the cooling system external to the engine; performing a visual inspection of exhaust of the engine to detect an indication of water vapor in the exhaust; performing a visual inspection to detect an indication of water leaking into an intake air manifold 30 of the engine; performing an engine oil analysis to detect water in the engine lubricant; reviewing a fault log history for the locomotive; and checking a level of a cooling system sight glass. The method allows for the isolation of potential sources of the water leak from one another so as to prevent false positive leak identification caused by transient water flow between the potential sources. If an engine cylinder assembly is a component identified as a potential source of the water leak during the water pressurization test, the method enables further testing to confirm leakage at such cylinder assembly, before undertaking the costly and time-consuming process of removing the cylinder assembly from the engine. Cylinder assemblies can be tested for leaks by performing an air leak test disclosed herein.
Abstract:
The present invention discloses stable, solid oral pharmaceutical composition comprising Lanthanum carbonate having more than 6 molecules of water per molecule of lanthanum carbonate and pharmaceutically acceptable carriers or diluents, wherein said carrier or diluent excludes monosaccharide/s or disaccharide/s, such that the composition has comparable in-vitro dissolution profile similar to that of FOSRENOL®.Also disclosed is a wet granulation process for making the same.
Abstract:
The present invention discloses stable, solid oral pharmaceutical composition comprising Lanthanum carbonate having more than 6 molecules of water per molecule of lanthanum carbonate and pharmaceutically acceptable carriers or diluents, wherein said carrier or diluent excludes monosaccharide/s or disaccharide/s, such that the composition has comparable in-vitro dissolution profile similar to that of FOSRENOL®.Also disclosed is a wet granulation process for making the same.
Abstract:
A system and method for monitoring the effectiveness of a heat exchange unit, which comprises at least one or more sensors for taking a plurality of temperature readings of a heated fluid, a coolant and fluids passing through the heat exchange unit. The temperature readings are transmitted and/or entered into a processor capable of comparing the temperature readings and calculating a measure of effectiveness of the heat exchange unit. The processor is in communication with a database that maintains at least one predetermined parameter limit associated with the effectiveness of the heat exchange unit. The processor analyzes the data and is also capable of generating a signal indicative of the health or condition of the heat exchange unit.