Abstract:
The invention relates to a method for the management of fluids required to operate a vehicle, remarkable in that it comprises an operation of the anodic oxidation of a solution of hydrogen peroxide (P) for the purpose of producing oxygen, water and hydrogen cations by subjecting said solution to an electric current produced by an electrical power source.The invention also relates to a device that makes it possible to implement the method.Applications: management of the fluids required to operate a vehicle in particular an aircraft.
Abstract:
The invention concerns a peroxosilicated, optionally phosphatized, disinfecting compound with scale preventive effect obtained by reacting an alkaline or alkaline-earth metasilicate with an active oxygen-releasing compound, for example potassium monopersulphate and/or oxygen peroxide, in inert medium. The compound can be stabilised with sodium hexametaphosphate. Copper and aluminium in salt form can be encapsulated or complexed with the metasilicate so that the resulting peroxosilicated compound can be used for its disinfecting, scale preventive, anticorrosive, flocculating and algicidal properties for more than three weeks.
Abstract:
A device for dispensing single components, in particular rivets of different shapes and sizes, wherein the rivets are conveyed to a riveting station one by one in a given direction along a path; the rivets are moved along and within an elastic sheath (11) by a pressure source (P); the device also includes a device for storing the components and includes a holder (24) for feeding the components one by one to the elastic sheath (11); the device provides for the uniform and steady feeding of rivets to riveting machines such as are used in the aircraft industry.
Abstract:
The invention relates to a device (D) for storing and dispensing parts (P) of the type that comprises a rigid parallelepiped container (100) receiving at least one winding of a flexible storage pipe (200), wherein at least one end (220) of said pipe (200) opens to the outside and said end (220) is provided with a dispensing head (300), while the other end (210) is supplied with movement fluid, characterized in that the pipe (200) used for storing the parts (P) is made of a polyether-based polyurethane of about 64 shore D.
Abstract:
A method of operating with a rivet is for the coupling and the tack riveting together of a first element and a second element. The method comprises positioning the rivet such that the rivet traverses two substantially coaxial openings arranged in the first and second elements to be assembled; pulling the mandrel to form a bulb on the second end; and resuming pulling of the mandrel, to cause a rupture of the sleeve at the bulb so as to permit removal, by way of the external surface of the first element, of the mandrel and of a first portion of the sleeve as well as the falling away of the portion of the bulb remaining on the external surface of the second element.
Abstract:
The invention relates to a method for making a rivet (R), of the type comprising, by deformation of the material of a substantially cylindrical metal segment, the operations of preforming a milled head (100) at the end of a rod (200), characterised in that it comprises, by deformation of the material (cold stamping) the following operations: creating a portion with a lower diameter (210) from the free end; creating a substantially cylindrical hollow core (220) for forming a tubular portion; preforming the hollow core (220) as a truncated cone; performing the lower diameter outer surface as a truncated cone. The invention also relates to the rivet obtained by said method.
Abstract:
The invention relates to a method for making a rivet (R), of the type comprising, by deformation of the material of a substantially cylindrical metal segment, the operations of preforming a milled head (100) at the end of a rod (200), characterised in that it comprises, by deformation of the material (cold stamping) the following operations: creating a portion with a lower diameter (210) from the free end; creating a substantially cylindrical hollow core (220) for forming a tubular portion; preforming the hollow core (220) as a truncated cone; performing the lower diameter outer surface as a truncated cone. The invention also relates to the rivet obtained by said method.
Abstract:
The invention concerns a blind rivet (R) of the type consisting of a deformable bushing (300) and a cleavable mandrel (400), the thus formed assembly being urged to be positioned and pass through the orifices (110 and 120) made substantially coaxial and provided in at least two elements (100 and 200) to be assembled. Said rivet is characterized in that the bushing (300) consists of one single piece but preformed to have a second end (320) in two parts (330 and 340) which, under the action of an axial load (arrow F), are cleaved apart so that one part of the bushing (330) moved by the tensile load of the mandrel (400) is urged to be opened around the fixed part of the bushing (340), the expansion of the mobile part (330) called sleeve being produced without folding. The invention also concerns a method for inserting such a rivet. The invention is applicable to rivet fixing.
Abstract:
The invention concerns a peroxosilicated, optionally phosphatized, disinfecting compound with scale preventive effect obtained by reacting an alkaline or alkaline-earth metasilicate with an active oxygen-releasing compound, for example potassium monopersulphate and/or oxygen peroxide, in inert medium. The compound can be stabilized with sodium hexametaphosphate. Copper and aluminium in salt form can be encapsulated or complexed with the metasilicate so that the resulting peroxosilicated compound can be used for its disinfecting, scale preventive, anticorrosive, flocculating and algicidal properties for more than three weeks.
Abstract:
Disclosed is a method for the management of fluids required to operate a fixed or mobile installation, the method including an operation of the anodic oxidation of a solution of hydrogen peroxide (P) for the purpose of producing oxygen, water and hydrogen cations by subjecting the solution to an electric current produced by an electrical power source. Also disclosed is a device that makes it possible to implement the method.