Abstract:
A fiber channel storage area network (SAN) provides virtualized storage space for a number of servers to a number of virtual disks implemented on various virtual redundant array of inexpensive disks (RAID) devices striped across a plurality of physical disk drives. The SAN includes plural controllers and communication paths to allow for fail-safe and fail-over operation. The plural controllers can be loosely-coupled to provide n-way redundancy and have more than one independent channel for communicating with one another. In the event of a failure involving a controller or controller interface, the virtual disks that are accessed via the affected interfaces are re-mapped to another interface in order to continue to provide high data availability. In particular, those targets, or virtual disks, which are owned by a failed device (e.g., interface or controller) are identified and their ownership information within the SAN configuration tables is revised to reflect one or more alternative devices which act as back-up devices.
Abstract:
A fiber channel storage area network (SAN) provides virtualized storage space for a number of servers to a number of virtual disks implemented on various virtual redundant array of inexpensive disks (RAID) devices striped across a plurality of physical disk drives. The SAN includes plural controllers and communication paths to allow for fail-safe and fail-over operation. The plural controllers can be loosely-coupled to provide n-way redundancy and have more than one independent channel for communicating with one another. In the event of a failure involving a controller or controller interface, the virtual disks that are accessed via the affected interfaces are re-mapped to another interface in order to continue to provide high data availability. In particular, deadman timers, heartbeat signals internal to each controller, and heartbeat signals between different controllers are used to detect controllers that are no longer communicating with other controllers in order to identify those controllers which are failing or have failed.
Abstract:
A fibre channel storage area network (SAN) provides virtualized storage space for a number of servers to a number of virtual disks implemented on various virtual redundant array of inexpensive disks (RAID) devices striped across a plurality of physical disk drives. The SAN includes plural controllers and communication paths to allow for fail-safe and fail-over operation. The plural controllers can be loosely-coupled to provide n-way redundancy and have more than one independent channel for communicating with one another. In the event of a failure involving a controller or controller interface, the virtual disks that are accessed via the affected interfaces are re-mapped to another interface in order to continue to provide high data availability.
Abstract:
A fiber channel storage area network (SAN) provides virtualized storage space for a number of servers to a number of virtual disks implemented on various virtual redundant array of inexpensive disks (RAID) devices striped across a plurality of physical disk drives. The SAN includes plural controllers and communication paths to allow for fail-safe and fail-over operation. The plural controllers can be loosely-coupled to provide n-way redundancy and have more than one independent channel for communicating with one another. In particular, respective portions from each of the back-end physical disk drives within the SAN are used as one of these alternative communication channels to pass messages between controllers. Such an alternative communications channel provides even further redundancy and robustness in the system.
Abstract:
A fiber channel storage area network (SAN) provides virtualized storage space for a number of servers to a number of virtual disks implemented on various virtual redundant array of inexpensive disks (RAID) devices striped across a plurality of physical disk drives. The SAN includes plural controllers and communication paths to allow for fail-safe and fail-over operation. The plural controllers can be loosely-coupled to provide n-way redundancy and more than one independent channel for communicating with one another. In the event of a failure involving a controller or controller interface, the virtual disks that are accessed via the affected interfaces are re-mapped to another interface in order to continue to provide high data availability. In particular a resource re-allocation routine operating on one of the controllers employs predetermined criteria against a family of potential back-up controllers in order to select appropriate back-up controllers for a particular device that fails. The criteria, for example, can include an explicit primary/secondary table to control selecting a secondary controller for any primary controller or be more complex so as to consider such statistics as data transfer loads among the interfaces, data transfer loads among the controllers, or the number of targets assigned to each interfaces.
Abstract:
A method of data replication from a first data storage device to a second data storage device. The method may include generating, at the first data storage device, at spaced time intervals, a plurality of snapshots for a logical data volume of the first data storage device, the logical data volume being an abstraction of data blocks from one or more physical storage devices, each snapshot identifying changes of data for at least a portion of the logical data volume since a most previous snapshot. Also at the first data storage device, the method includes generating a delta volume, the delta volume indicating changes in the data of at least a portion of the logical data volume between two non-consecutive snapshots. The method further involves replicating the delta volume to the second data storage device, and replicating the changes to the data indicated therein at the second data storage device.
Abstract:
The present disclosure relates generally to a method and system for creating, replicating, and providing access to virtual snapshots of a disk storage block of a disk storage system or subsystem. In one embodiment, the present disclosure relates to a virtual snapshot accessible to local users of a local data storage device. The virtual snapshot may direct local users to a snapshot stored on computer-readable storage medium at a remote data storage site, but give the appearance as if data of the corresponding snapshot is stored locally. The virtual snapshot is replaced by replication of the snapshot from the remote data storage site to the local data storage device. Each snapshot may relate to data of a logical data volume, the logical data volume being an abstraction of data blocks from one or more physical storage devices.
Abstract:
A fibre channel storage area network (SAN) provides virtualized storage space for a number of servers to a number of virtual disks implemented on various virtual redundant array of inexpensive disks (RAID) devices striped across a plurality of physical disk drives. The SAN includes plural controllers and communication paths to allow for fail-safe and fail-over operation. The plural controllers can be loosely-coupled to provide n-way redundancy and have more than one independent channel for communicating with one another. In the event of a failure involving a controller or controller interface, the virtual disks that are accessed via the affected interfaces are re-mapped to another interface in order to continue to provide high data availability. In particular, a common memory storage device is connected to the back-ends of every controller to provide a storage area. In this manner, the common memory storage device can be accessed via operations similar to those a controller already uses to presently access the physical disks which are connected to the back-end of the controllers.
Abstract:
A method of data replication from a first data storage device to a second data storage device. The method may include generating, at the first data storage device, at spaced time intervals, a plurality of snapshots for a logical data volume of the first data storage device, the logical data volume being an abstraction of data blocks from one or more physical storage devices, each snapshot identifying changes of data for at least a portion of the logical data volume since a most previous snapshot. Also at the first data storage device, the method includes generating a delta volume, the delta volume indicating changes in the data of at least a portion of the logical data volume between two non-consecutive snapshots. The method further involves replicating the delta volume to the second data storage device, and replicating the changes to the data indicated therein at the second data storage device.