Abstract:
A cochlear lead includes a plurality of electrodes configured to stimulate an auditory nerve from within a cochlea and a flexible body supporting the plurality of electrodes along a length of the flexible body. A stiffening element is slidably encapsulated within the flexible body, the stiffening element extending past a most distal electrode at the tip of the cochlear lead, wherein a distal portion of the stiffening element plastically deforms upon insertion into a curved portion of the cochlea.
Abstract:
A cochlear lead includes a plurality of electrodes configured to stimulate an auditory nerve from within a cochlea and a flexible body supporting the plurality of electrodes along a length of the flexible body. A stiffening element is slidably encapsulated within the flexible body, the stiffening element extending past a most distal electrode at the tip of the cochlear lead, wherein a distal portion of the stiffening element plastically deforms upon insertion into a curved portion of the cochlea.
Abstract:
Exemplary insertion tools, systems, and methods for inserting a pre-curved electrode array portion of a lead into a bodily orifice are described herein. An exemplary insertion tool includes a handle assembly, a slider assembly, an insertion assembly coupled to the handle assembly, and a retractor assembly disposed at least partially within the handle assembly and configured to selectively couple to a straightening member inserted into the pre-curved electrode array portion and at least partially retract the straightening member from the pre-curved electrode array portion in response to actuation by a user of the slider assembly. The retractor assembly may comprise a spring-loaded retractor member configured to move from a distal position to a proximal position in response to actuation by the user of the slider assembly to at least partially retract the straightening member from the pre-curved electrode array portion. Corresponding insertion tools, systems, and methods are also described.
Abstract:
Embodiments of the present invention provide a fastening support assembly configured to securely connect a first panel above a second panel. The fastening support assembly includes a shaft having a cap at a first end and a distal tip at a second end. The shaft defines an internal chamber. The distal tip is configured to secure to the first panel. A pin is positioned within the internal chamber, wherein movement of the pin into the internal chamber radially expands the shaft. A portion of the shaft and the pin proximate the cap are configured to substantially fill a hole formed through the second panel when the second panel is secured to the fastening support assembly.
Abstract:
A battery container comprising a box with a lid. Ventilation openings are provided in the sides of the box. Part of the sides in which ventilation openings are provided may be attached to the lid. Apertures having drainage channels beneath are provided in the lid. The openings and apertures provide sufficient ventilation to meet the relevant regulations. The provision of apertures in the lid allows the overall height of the container to be reduced.
Abstract:
A thin profile impact resistant cochlear implant includes a single piece machined case having a bottom surface, wherein at least a portion of the bottom surface is concave and a single piece machined cover configured to be joined to the case, the cover comprising a convex upper surface. A method for forming thin profile cochlear implant is also provided.
Abstract:
A cochlear lead includes a plurality of electrodes configured to stimulate an auditory nerve from within a cochlea and a flexible body supporting the plurality of electrodes along a length of the flexible body. A stiffening element is slidably encapsulated within the flexible body, the stiffening element extending past a most distal electrode at the tip of the cochlear lead, wherein a distal portion of the stiffening element plastically deforms upon insertion into a curved portion of the cochlea.
Abstract:
Exemplary insertion tools, systems, and methods for inserting a pre-curved electrode array portion of a lead into a bodily orifice are described herein. An exemplary insertion tool includes a handle assembly, a slider assembly, an insertion assembly coupled to the handle assembly, and a retractor assembly disposed at least partially within the handle assembly and configured to selectively couple to a straightening member inserted into the pre-curved electrode array portion and at least partially retract the straightening member from the pre-curved electrode array portion in response to actuation by a user of the slider assembly. The retractor assembly may comprise a spring-loaded retractor member configured to move from a distal position to a proximal position in response to actuation by the user of the slider assembly to at least partially retract the straightening member from the pre-curved electrode array portion. Corresponding insertion tools, systems, and methods are also described.