摘要:
A method for controlling a vehicle including a fuel cell system and an energy storage unit includes, if the fuel cell system is charging the energy storage unit, determining an average ratio of (i) a change in energy stored in the energy storage unit and (ii) a mass of hydrogen consumed by the fuel cell system to generate the change in energy stored in the energy storage unit. The method also includes, if the fuel cell system is not charging the energy storage unit, selecting a target operating power for the fuel cell system based on vehicle power demand and the determined ratio that sufficiently minimizes drive cycle hydrogen consumption by the fuel cell system.
摘要:
A propulsion system includes a first torque producing arrangement including an electric machine configured to a first energy source supplying electrical energy to the electric machine. The system also includes a second torque producing arrangement having an engine connected to a second energy source configured to supply gaseous fuel to the engine. The system has a hydrogen production system having an electrolyzer, a water source, a hydrogen dispensing and loading system, and a connection to an electricity grid. Hydrogen is loaded to the second energy source when the electrolyzer is electrolyzing the water. The engine further connects to a third energy source configured to supply a non-hydrogen fuel to the engine. The system has a controller electrically connected to the motor and the engine capable of selecting the propulsion component and the fuel source.
摘要:
A method for controlling a vehicle including a fuel cell system and an energy storage unit includes, if the fuel cell system is charging the energy storage unit, determining an average ratio of (i) a change in energy stored in the energy storage unit and (ii) a mass of hydrogen consumed by the fuel cell system to generate the change in energy stored in the energy storage unit. The method also includes, if the fuel cell system is not charging the energy storage unit, selecting a target operating power for the fuel cell system based on vehicle power demand and the determined ratio that sufficiently minimizes drive cycle hydrogen consumption by the fuel cell system.
摘要:
A computer-implemented method includes establishing a road network model on which a plurality of simulated vehicles may be run. The method also includes setting up a plurality of scenarios under which vehicle driving conditions vary to be run on the road network model. The illustrative method includes receiving energy usage related data for a plurality of simulated vehicles run in at least one of the plurality of scenarios on the road network model. The method further includes calculating a total energy consumption for each of the vehicles. The method additionally includes repeating the receiving and calculating steps to determine how various elements of the road network model and scenarios effect vehicle energy consumption.
摘要:
A propulsion system includes a first torque producing arrangement including an electric machine configured to a first energy source supplying electrical energy to the electric machine. The system also includes a second torque producing arrangement having an engine connected to a second energy source configured to supply gaseous fuel to the engine. The system has a hydrogen production system having an electrolyzer, a water source, a hydrogen dispensing and loading system, and a connection to an electricity grid. Hydrogen is loaded to the second energy source when the electrolyzer is electrolyzing the water. The engine further connects to a third energy source configured to supply a non-hydrogen fuel to the engine. The system has a controller electrically connected to the motor and the engine capable of selecting the propulsion component and the fuel source.