Abstract:
A packet control mechanism for a computer data system that dynamically adjusts packet training depending on the utilization load on the processor. The dynamic adjustment of packet training can be to enable and disable packet training, or adjust the number of packets in the packet train. In preferred embodiments, the computer data system includes a processor utilization mechanism that indicates a load on a processor. When the packet control mechanism determines the load on the processor is above a threshold limit, the packet control mechanism reduces the processor load by compressing the packets into the packet train. The compressing of the packets is stopped or reduced when the processor load is below a threshold in order to increase the data throughput on the network interface.
Abstract:
A system for stopping the operation of a data processing system executing control words stored in a read/write control word storage device. A special control word is stored at the control storage address where it is desired to stop operation of the processor and the regular control word at that address is stored in a service processor memory. When the control storage address containing the special control word is reached, the special control word causes the system clock to be inhibited, thereby stopping the execution of control words, an indication that the processor has been stopped is generated, and the regular control word is restored to the control word storage device from the service processor memory for resumption of system operation.
Abstract:
Multiple database queries are satisfied with the same data in a manner that assures the data is current and without having to interrogate the database for each query. In a first embodiment, all queries that are received during the processing of a first query after interrogation of the database has begun for the first query are evaluated to determine whether the result set returned for the first query will satisfy the queries received during processing of the first query. If so, the result set returned for the first query is used to generate result sets for the subsequent compatible queries received during the processing of the first query. In a second embodiment, queries are delayed and grouped, and a new query is then processed for each group that returns a result set that satisfies all of the queries in the group. In both cases, the result set for one query is used to generate a result set for a different query.
Abstract:
Disclosed is an apparatus, method, and program product for identifying and grouping threads that have interdependent data access needs. The preferred embodiment of the present invention utilizes two different constructs to accomplish this grouping. A Memory Affinity Group (MAG) is disclosed. The MAG construct enables multiple threads to be associated with the same node without any foreknowledge of which threads will be involved in the association, and without any control over the particular node with which they are associated. A Logical Node construct is also disclosed. The Logical Node construct enables multiple threads to be associated with the same specified node without any foreknowledge of which threads will be involved in the association. While logical nodes do not explicitly identify the underlying physical nodes comprising the system, they provide a means of associating particular threads with the same node and other threads with other node(s).
Abstract:
Disclosed is an apparatus, method, and program product for identifying and grouping threads that have interdependent data access needs. The preferred embodiment of the present invention utilizes two different constructs to accomplish this grouping. A Memory Affinity Group (MAG) is disclosed. The MAG construct enables multiple threads to be associated with the same node without any foreknowledge of which threads will be involved in the association, and without any control over the particular node with which they are associated. A Logical Node construct is also disclosed. The Logical Node construct enables multiple threads to be associated with the same specified node without any foreknowledge of which threads will be involved in the association. While logical nodes do not explicitly identify the underlying physical nodes comprising the system, they provide a means of associating particular threads with the same node and other threads with other node(s).
Abstract:
Multiple database queries are satisfied with the same data in a manner that assures the data is current and without having to interrogate the database for each query. In a first embodiment, all queries that are received during the processing of a first query after interrogation of the database has begun for the first query are evaluated to determine whether the result set returned for the first query will satisfy the queries received during processing of the first query. If so, the result set returned for the first query is used to generate result sets for the subsequent compatible queries received during the processing of the first query. In a second embodiment, queries are delayed and grouped, and a new query is then processed for each group that returns a result set that satisfies all of the queries in the group. In both cases, the result set for one query is used to generate a result set for a different query.
Abstract:
A packet control mechanism for a computer data system that dynamically adjusts packet training depending on the utilization load on the processor. The dynamic adjustment of packet training can be to enable and disable packet training, or adjust the number of packets in the packet train. In preferred embodiments, the computer data system includes a processor utilization mechanism that indicates a load on a processor. When the packet control mechanism determines the load on the processor is above a threshold limit, the packet control mechanism reduces the processor load by compressing the packets into the packet train. The compressing of the packets is stopped or reduced when the processor load is below a threshold in order to increase the data throughput on the network interface.
Abstract:
A packet control mechanism for a computer data system that dynamically adjusts packet training depending on the utilization load on the processor. The dynamic adjustment of packet training can be to enable and disable packet training, or adjust the number of packets in the packet train. In preferred embodiments, the computer data system includes a processor utilization mechanism that indicates a load on a processor. When the packet control mechanism determines the load on the processor is above a threshold limit, the packet control mechanism reduces the processor load by compressing the packets into the packet train. The compressing of the packets is stopped or reduced when the processor load is below a threshold in order to increase the data throughput on the network interface.
Abstract:
A packet control mechanism for a computer data system that dynamically adjusts packet training depending on the utilization load on the processor. The dynamic adjustment of packet training can be to enable and disable packet training, or adjust the number of packets in the packet train. In preferred embodiments, the computer data system includes a processor utilization mechanism that indicates a load on a processor. When the packet control mechanism determines the load on the processor is above a threshold limit, the packet control mechanism reduces the processor load by compressing the packets into the packet train. The compressing of the packets is stopped or reduced when the processor load is below a threshold in order to increase the data throughput on the network interface.
Abstract:
Disclosed is an apparatus, method, and program product for identifying and grouping threads that have interdependent data access needs. The preferred embodiment of the present invention utilizes two different constructs to accomplish this grouping. A Memory Affinity Group (MAG) is disclosed. The MAG construct enables multiple threads to be associated with the same node without any foreknowledge of which threads will be involved in the association, and without any control over the particular node with which they are associated. A Logical Node construct is also disclosed. The Logical Node construct enables multiple threads to be associated with the same specified node without any foreknowledge of which threads will be involved in the association. While logical nodes do not explicitly identify the underlying physical nodes comprising the system, they provide a means of associating particular threads with the same node and other threads with other node(s).