摘要:
An apparatus, program product and method in which application program-specified resource allocation and allocation strength preferences are used to allocate hardware resources from a computer for that application program. The resource allocation preference is used to allocate hardware resources for the application program, while the allocation strength preference is used to determine whether to allocate alternate hardware resources when the resource allocation preference specified by the application program cannot be met.
摘要:
Disclosed is an apparatus, method, and program product for identifying and grouping threads that have interdependent data access needs. The preferred embodiment of the present invention utilizes two different constructs to accomplish this grouping. A Memory Affinity Group (MAG) is disclosed. The MAG construct enables multiple threads to be associated with the same node without any foreknowledge of which threads will be involved in the association, and without any control over the particular node with which they are associated. A Logical Node construct is also disclosed. The Logical Node construct enables multiple threads to be associated with the same specified node without any foreknowledge of which threads will be involved in the association. While logical nodes do not explicitly identify the underlying physical nodes comprising the system, they provide a means of associating particular threads with the same node and other threads with other node(s).
摘要:
Disclosed is an apparatus, method, and program product for identifying and grouping threads that have interdependent data access needs. The preferred embodiment of the present invention utilizes two different constructs to accomplish this grouping. A Memory Affinity Group (MAG) is disclosed. The MAG construct enables multiple threads to be associated with the same node without any foreknowledge of which threads will be involved in the association, and without any control over the particular node with which they are associated. A Logical Node construct is also disclosed. The Logical Node construct enables multiple threads to be associated with the same specified node without any foreknowledge of which threads will be involved in the association. While logical nodes do not explicitly identify the underlying physical nodes comprising the system, they provide a means of associating particular threads with the same node and other threads with other node(s).
摘要:
An apparatus, program product and method in which application program-specified resource allocation and allocation strength preferences are used to allocate hardware resources from a computer for that application program. The resource allocation preference is used to allocate hardware resources for the application program, while the allocation strength preference is used to determine whether to allocate alternate hardware resources when the resource allocation preference specified by the application program cannot be met.
摘要:
An operating system kernel includes an attach mechanism and a detach mechanism. In addition, processes are tagged with an access attribute identifying the process as either a client process or a server process. Based on the access attribute, the operating system kernel lays out the process local address space differently depending on whether the process is a client process or a server process. A server process can “attach” to a client process and reference all of the client process' local storage as though it were its own. The server process continues to reference its own process local storage, but in addition, it can reference the other storage, using the client process' local addresses. When access to the other storage is no longer needed, the server process can “detach” from the client process. Once detached, the other storage can no longer be referenced.
摘要:
An apparatus and method provide simultaneous local and global addressing capabilities in a computer system. A global address space is defined that may be accessed by all processes. In addition, each process has a local address space that is local (and therefore available) only to that process. An address space processor is implemented in software to perform system functions that distinguish between local addresses and global addresses. In the preferred embodiments, the local address space has a size that is a multiple of the size of a segment of global address space. When the hardware indicates a page fault, the address space processor determines whether the address being translated is a local address or a global address. If the address is a local address, the address space processor uses a local directory to process the page fault. If the address is a global address, the address space processor uses a global directory to process the page fault. When the hardware indicates an addressing error because a computed address crosses a global segment boundary, the address space processor determines whether the address is a local address or a global address. If the address is a global address, the address space processor indicates an addressing error. If the address is a local address, the address space processor determines whether the address is within the process' local address space, and indicates an addressing error if the address is outside the process' local address space. Instructions are allowed to operate on both local and global addresses because the address space processor handles either type of address whenever software assistance is required, such as for servicing a page fault or checking a segment boundary crossing. In addition, the address space processor dynamically checks the addressing compatibility of called code before passing control to the called code.
摘要:
Methods, systems, and media for managing dynamic memory are disclosed. Embodiments may disclose identifying nodes with having memory for dynamic storage, and reserving a portion of the memory from the identified nodes for a heap pool. After generating a heap pool, embodiments may allocate dynamic storage from the heap pool to tasks received that are associated with one of the identified nodes. More specifically, embodiments identify the node or home node associated with the task, the amount of dynamic storage requested by the task, and create a heap object in the node associated with the task to provide the requested dynamic storage. Some embodiments involve de-allocating the dynamic storage assigned to the task upon receipt of an indication that the task is complete and the dynamic storage is no longer needed for the task. Several of such embodiments return the de-allocated dynamic storage to the heap pool for reuse.
摘要:
Disclosed is an apparatus, method, and program product that enables distribution of operating system resources on a nodal basis in the same proportions as the expected system workload. The preferred embodiment of the present invention accomplishes this by assigning various types of weights to each node to represent their proportion of the overall balance within the system. Target Weights represent the desired distribution of the workload based on the existing proportions of processor and memory resources on each node. The actual workload balance on the system is represented by Current Weights, which the operating system strives to keep as close to the Target Weights as possible, on an ongoing basis. When the system is started, operating system services distribute their resources nodally in the same proportions as the Target Weights, and can request to be notified if the Target Weights ever change. If processors and/or memory are subsequently added or removed, new Target Weights are calculated at that time, and all services which requested notification are notified so they can redistribute their resources according to the new Target Weights or a stepwise refinement thereof.
摘要:
Methods, systems, and media for managing dynamic memory are disclosed. Embodiments may disclose identifying nodes with having memory for dynamic storage, and reserving a portion of the memory from the identified nodes for a heap pool. After generating a heap pool, embodiments may allocate dynamic storage from the heap pool to tasks received that are associated with one of the identified nodes. More specifically, embodiments identify the node or home node associated with the task, the amount of dynamic storage requested by the task, and create a heap object in the node associated with the task to provide the requested dynamic storage. Some embodiments involve de-allocating the dynamic storage assigned to the task upon receipt of an indication that the task is complete and the dynamic storage is no longer needed for the task. Several of such embodiments return the de-allocated dynamic storage to the heap pool for reuse.
摘要:
Methods, systems, and media for managing dynamic memory are disclosed. Embodiments may disclose identifying nodes with having memory for dynamic storage, and reserving a portion of the memory from the identified nodes for a heap pool. After generating a heap pool, embodiments may allocate dynamic storage from the heap pool to tasks received that are associated with one of the identified nodes. More specifically, embodiments identify the node or home node associated with the task, the amount of dynamic storage requested by the task, and create a heap object in the node associated with the task to provide the requested dynamic storage. Some embodiments involve de-allocating the dynamic storage assigned to the task upon receipt of an indication that the task is complete and the dynamic storage is no longer needed for the task. Several of such embodiments return the de-allocated dynamic storage to the heap pool for reuse.