Abstract:
A burner (1) for burning a gaseous oxidant with a gaseous fuel, with a combustion chamber (2), in which the combustion reaction takes place during the operation of the burner (2), has a wall structure (4) which defines the combustion chamber (2) on the inlet side and which has oxidant openings (5) for introducing the oxidant into the combustion chamber (2) and fuel openings (6), which are separate therefrom, for introducing the fuel into the combustion chamber (2). The wall structure (4) has an oxidant distributor space (7), which is fluidically connected with the oxidant openings (5) on the outlet side and is fluidically connected with at least one oxidant feed opening (9) on the inlet side, as well as contains a fuel distributor space (8), which is fluidically separated from the oxidant distributor space (7) and is fluidically connected on the outlet side with the fuel openings (6) and is fluidically connected with at least one fuel feed opening (10) on the inlet side. A plurality of oxidant feed openings (9) are formed in the wall structure (4) on a side facing away from the combustion chamber (2), a plurality of fuel feed openings (10) are formed in the wall structure (4) on the side facing away from the combustion chamber (2), and the oxidant feed openings (9) and fuel feed openings (10) are arranged next to each other and alternating with one another in a straight connection area (11).
Abstract:
A fuel cell module (1) with a fuel cell (2), a residual gas burner (4) and a heat exchanger (6). The service life of the module (1) can be improved by at least one compensator (27) for establishing a flow-carrying connection between the residual gas burner (4) and the heat exchanger (6).
Abstract:
A modular fuel cell system is provided, especially for use in vehicles, with a fuel cell module, which has a stack of a plurality fuel cell elements between a first end plate and a second end plate, with a burner-heat exchanger module, which has a heat exchanger for preheating cathode gas and a burner for reacting fuel cell waste gases. Manufacturing advantages are provided with the first end plate has, on a connection side facing away from the stack, an anode gas inlet opening, a cathode gas inlet opening, an anode waste gas outlet opening and a cathode waste gas outlet opening and if the burner-heat exchanger module has an anode gas outlet opening communicatingly connected to the an anode gas inlet opening, an cathode gas outlet opening communicatingly connected to the an cathode gas inlet opening, an anode waste gas inlet opening communicatingly connected to the an anode waste gas outlet opening and an cathode waste gas inlet opening communicatingly connected to the an cathode waste gas outlet opening.
Abstract:
A fuel cell module (1) with a fuel cell (2), a residual gas burner (4) and a heat exchanger (6). The service life of the module (1) can be improved by at least one compensator (27) for establishing a flow-carrying connection between the residual gas burner (4) and the heat exchanger (6).
Abstract:
A burner (1) for burning a gaseous oxidant with a gaseous fuel, with a combustion chamber (2), in which the combustion reaction takes place during the operation of the burner (2), has a wall structure (4) which defines the combustion chamber (2) on the inlet side and which has oxidant openings (5) for introducing the oxidant into the combustion chamber (2) and fuel openings (6), which are separate therefrom, for introducing the fuel into the combustion chamber (2). The wall structure (4) has an oxidant distributor space (7), which is fluidically connected with the oxidant openings (5) on the outlet side and is fluidically connected with at least one oxidant feed opening (9) on the inlet side, as well as contains a fuel distributor space (8), which is fluidically separated from the oxidant distributor space (7) and is fluidically connected on the outlet side with the fuel openings (6) and is fluidically connected with at least one fuel feed opening (10) on the inlet side. A plurality of oxidant feed openings (9) are formed in the wall structure (4) on a side facing away from the combustion chamber (2), a plurality of fuel feed openings (10) are formed in the wall structure (4) on the side facing away from the combustion chamber (2), and the oxidant feed openings (9) and fuel feed openings (10) are arranged next to each other and alternating with one another in a straight connection area (11).