Abstract:
A cladding (22) for a wall (12) includes a barrier layer (24) that can be deformed by the action of a polymer actuator (14). According to the invention, a contact surface (A) of the cladding lies completely against the wall, at least in the non-deformed state, stabilising the intrinsically elastic wall cladding. For example, the wall cladding can be fixed to the wall (12) in the form of lamellae (22), at respective points, in such a way that the activation of the polymer actuator (14) causes the lamellae (22) to bend, thus permitting, for example, a layer (25) of ice to be detached from the cladding. Alternatively, the cladding can also be configured from a membrane actuator, which is fixed at points, or by its entire surface to the wall (12).
Abstract:
An organic layer (1) is applied to a transparent carrier (2) in such a way that different partial regions with different refractive indices are formed in the layer. Owing to deflection at the phase boundaries within the layer, fewer photons remain trapped in the layer as a result of wave-guiding losses than in the case of homogeneous layers.
Abstract:
A cladding (22) for a wall (12) includes a barrier layer (24) that can be deformed by the action of a polymer actuator (14). According to the invention, a contact surface (A) of the cladding lies completely against the wall, at least in the non-deformed state, stabilizing the intrinsically elastic wall cladding. For example, the wall cladding can be fixed to the wall (12) in the form of lamellae (22), at respective points, in such a way that the activation of the polymer actuator (14) causes the lamellae (22) to bend, thus permitting, for example, a layer (25) of ice to be detached from the cladding. Alternatively, the cladding can also be configured from a membrane actuator, which is fixed at points, or by its entire surface to the wall (12).