Abstract:
A method and system suitable for inferring trajectory predictor parameters of aircraft for the purpose of predicting aircraft trajectories. The method and system involve receiving trajectory prediction information regarding an aircraft, and then using this information to infer (extract) trajectory predictor parameters of the aircraft that are otherwise unknown to a ground automation system. The trajectory predictor parameters can then be applied to one or more trajectory predictors of the ground automation system to predict a trajectory of the aircraft. In certain embodiments, the method and system can utilize available air-ground communication link capabilities, which may include data link capabilities available as part of trajectory-based operations (TBO).
Abstract:
A trajectory-based sense-and-avoid system for use on an aircraft is provided that utilizes 4-D constructs, such as 4-D trajectories or 4-D polytopes, to maintain separation from other aircraft and/or to avoid collisions with other aircraft. In certain embodiments the trajectory-based sense-and-avoid system utilizes 4-D trajectories provided from an external source and/or 4-D trajectories estimated based on a variety of data sources during operation.
Abstract:
A trajectory-based sense-and-avoid system for use on an aircraft is provided that utilizes 4-D constructs, such as 4-D trajectories or 4-D polytopes, to maintain separation from other aircraft and/or to avoid collisions with other aircraft. In certain embodiments the trajectory-based sense-and-avoid system utilizes 4-D trajectories provided from an external source and/or 4-D trajectories estimated based on a variety of data sources during operation.
Abstract:
A method and system suitable for inferring trajectory predictor parameters of aircraft for the purpose of predicting aircraft trajectories. The method and system involve receiving trajectory prediction information regarding an aircraft, and then using this information to infer (extract) trajectory predictor parameters of the aircraft that are otherwise unknown to a ground automation system. The trajectory predictor parameters can then be applied to one or more trajectory predictors of the ground automation system to predict a trajectory of the aircraft. In certain embodiments, the method and system can utilize available air-ground communication link capabilities, which may include data link capabilities available as part of trajectory-based operations (TBO).
Abstract:
A method and apparatus for encoding and using user preferences in air traffic management operations are disclosed. The method may include determining a current trajectory based on the user preferences, computing a cost of deviations from the current trajectory, codifying the cost of deviations from the current trajectory using normalized cost coefficients for one or more segments of the current trajectory, and communicating the codified cost of deviations to an air traffic control (ATC) automation system, wherein the ATC automation system computes costs of maneuvers based on the codified cost of deviations and ranks the maneuvers according to cost.
Abstract:
Methods and systems suitable for negotiating air traffic trajectory modification requests received from multiple aircraft that each has trajectory parameters. The methods include transmitting from at least a first aircraft a first trajectory modification request to alter the altitude, speed and/or lateral route thereof. A first conflict assessment is then performed to determine if the first trajectory modification request poses a conflict with the altitudes, speeds and lateral routes of other aircraft. If a conflict is not identified, the first trajectory modification request is granted and the first aircraft is notified of the first trajectory modification request being granted. Alternatively, if a conflict is identified, the first trajectory modification request is not granted and the first aircraft is notified thereof. If the first trajectory modification request was not granted, the first trajectory modification request is placed in a queue, which is periodically processed to perform subsequent conflict assessments.
Abstract:
A method and apparatus for encoding and using user preferences in air traffic management operations are disclosed. The method may include determining a current trajectory based on the user preferences, computing a cost of deviations from the current trajectory, codifying the cost of deviations from the current trajectory using normalized cost coefficients for one or more segments of the current trajectory, and communicating the codified cost of deviations to an air traffic control (ATC) automation system, wherein the ATC automation system computes costs of maneuvers based on the codified cost of deviations and ranks the maneuvers according to cost.
Abstract:
Methods and system are provided for scheduling and negotiating air traffic within an airspace surrounding an airport and scheduled to land at the airport. An air traffic control (ATC) system is used to monitor the altitudes, speeds and lateral routes of aircraft. The ATC system generates a scheduled time-of-arrival (STA) at one or more meter fix points associated with the airport, the STA is stored, and data is received or inferred with the ATC system for at least a first of the aircraft, including a minimum fuel-cost speed and predicted trajectory parameters of the first aircraft based on current values of its existing trajectory parameters. Auxiliary data, including earliest and latest estimated time-of-arrival (ETAmin) and (ETAmax) at the meter fix point, STA being within/ outside ETAmin, ETAmax are generated, instructions are transmitted to the first aircraft, and the STA is updated for each aircraft stored in a queue.
Abstract:
Methods and systems suitable for negotiating air traffic trajectory modification requests received from multiple aircraft that each has trajectory parameters. The methods include transmitting from at least a first aircraft a first trajectory modification request to alter the altitude, speed and/or lateral route thereof. A first conflict assessment is then performed to determine if the first trajectory modification request poses a conflict with the altitudes, speeds and lateral routes of other aircraft. If a conflict is not identified, the first trajectory modification request is granted and the first aircraft is notified of the first trajectory modification request being granted. Alternatively, if a conflict is identified, the first trajectory modification request is not granted and the first aircraft is notified thereof. If the first trajectory modification request was not granted, the first trajectory modification request is placed in a queue, which is periodically processed to perform subsequent conflict assessments.
Abstract:
Methods and systems scheduling and negotiating air traffic within an airspace surrounding an airport and scheduled to land at the airport. An air traffic control (ATC) system is used to monitor the altitudes, speeds and lateral routes of aircraft as they enter the airspace. The ATC system generates a scheduled time-of-arrival (STA) for each aircraft at one or more meter fix points associated with the airport, the STA for each aircraft is stored, and data is received or inferred with the ATC system for at least a first of the aircraft, including a minimum fuel-cost speed and predicted trajectory parameters of the first aircraft based on current values of its existing trajectory parameters. Auxiliary data, including earliest and latest estimated time-of-arrival ETAmin and ETAmax at the meter fix point, are generated for the first aircraft using the predicted trajectory parameters. The ATC system determines whether the STA of the first aircraft is in or outside an ETA range bounded by its ETAmin and ETAmax. Instructions are transmitted to the first aircraft to ensure its arrival at the meter fix point at the STA or the ETAmin of the first aircraft, and the STA is updated for each aircraft stored in the queue.