Abstract:
An encryption/decryption method and devices for protecting data in a memory device from unauthorized access is provided. First, obtaining a specific code from a memory device and then encrypting the specific code and original data for obtaining encrypted data during a write cycle. Finally, writing the encrypted data to the memory device according to an access address. The access address can be also encrypted to generate the encrypted data. The encryption level increases by this way so that the valuable information is under protection.
Abstract:
A digital photo frame with a power saving function includes a time-counting unit, a sensing unit, a displaying unit, and a processing unit. The time-counting unit is used for generating a time-counting signal. The sensing unit is used for sensing the environmental status and generating a sensing signal. The displaying unit is used for displaying an image data. The processing unit controls the sensing unit and the displaying unit. The processing unit further uses a power control unit to control the power supply according to the time-counting signal and the sensing signal so that the digital photo frame operates in a normal mode. After the processing unit does not receive the sensing signal within a pre-determined period counted by the time-counting signal, the processing unit controls the power supply so that the digital photo frame operates in a power saving mode. Hereby, the goal of power saving is achieved.
Abstract:
An encryption/decryption method and devices for protecting data in a memory device from unauthorized access is provided. First, obtaining a specific code from a memory device and then encrypting the specific code and original data for obtaining encrypted data during a write cycle. Finally, writing the encrypted data to the memory device according to an access address. The access address can be also encrypted to generate the encrypted data. The encryption level increases by this way so that the valuable information is under protection.
Abstract:
A pad circuit and operating method for automatically adjusting gains is disclosed, wherein the pad circuit is embedded in an integrated circuit chip that further includes a core logic circuit therein. The pad circuit includes an input/output pin, a gain-adjustable output buffer, an input buffer and a signal feature detector. The method includes the steps as follows. A test signal is firstly issued from the core logic circuit to the gain-adjustable output buffer, while the test signal is then manipulated and outputted to an external device via the input/output pin. Next, a feedback test signal is fed into the input buffer from the external device, while a test result is realized according to a waveform feature of the feedback test signal. Finally, the gain of the gain-adjustable output buffer is adjusted according to the obtained test result.
Abstract:
An apparatus and method for accessing data from a storage medium is disclosed. The apparatus fetches a data block from the storage medium via an accessing unit, and corrects an error of the data block by an error correction code (ECC) decoder according to an ECC of the data block. The apparatus also includes an error detection code (EDC) processor for calculating an EDC of each data sector of the data block, and a flag register for storing a flag associated with each data sector. The method includes re-fetching a data sector if the associated flag indicates the EDC of the data sector is incorrect; and bypassing a data sector if the associated flag indicates that the EDC of the data sector is correct, even though the ECC of the data block indicates that the data sector contains an error.
Abstract:
An optical storage system includes a pickup head for picking up data from a storage medium. Firstly, the maxima of a tracking error signal and runout are obtained in a calibration procedure in a close loop formed by an optical pickup head, a pre-amplifier, a compensator, a band-pass filter and a maximum detector. A calibration factor is then defined and derived by using the obtained maxima and nominal factors of a power amplifier and the optical pickup head of the optical storage system. The path formed by the series-connected band-pass filter and maximum detector is then disabled, while the calculated calibration factor is then stored in the compensator. The optical storage system may operate in a close loop formed by the optical pick head, pre-amplifier, compensator, a power amplifier under a normal operation procedure so that the optical storage system may record or read data onto/from an optical disc under the compensation provided by the calibration factor.
Abstract:
A method for accessing data from a storage medium according to requirements of a host is disclosed. The storage medium stores a plurality of data blocks that each one of them further includes a plurality of data sectors and an error correction code used for recovering errors of the data block. Each one of the data sectors further includes an error detection code used for detecting correctness of associated data sector. When a data block is verified to include at least one incorrect data sectors by means of the error detection codes, those correct data sectors rather than all the data sectors are stored into a specific position of a data buffer. The whole data block is next re-fetched and stored into the same position of the data buffer used to occupied by the data block, those stored correct data sectors are then re-fetched to overwrite corresponding ones in the data buffer. Thereafter, the incorrect data sectors are re-detected to verify their correctness again. Not only those correct data sectors will be faultless protected, but also upgrade data access performance.
Abstract:
A method for detecting the speed of a sledge motor in an optical storage device. In response to a track jumping command, a tracking servo output signal is expanded onto an orthogonal space to obtain simulation parameters corresponding to the tracking servo output signal. A pseudo-tracking servo output signal is generated according to the simulation parameters of the tracking servo output signal. Then, the pseudo-tracking servo output signal is used to compute the speed of the sledge motor.
Abstract:
An electronic system with remap function comprises a memory unit, a remap unit, and a microprocessor. The memory unit at least has a first bank and a second bank, which have a common area and a non-common area, respectively. The common area of the first bank comprises an addressing table and the common area of the second bank comprises at least one remap program code. The remap unit receives an address data, a bank selecting data, and a remap data, and then generates an embodied bank selecting data according to the remap data and the bank selecting data, and generates an embodied address data according to the remap data and the address data. The microprocessor fetches the original program code from the first bank or the second bank, or fetches the remap program code from the second bank according to the embodied bank selecting data and the embodied address data.
Abstract:
A method for detecting a current through a pick-up head in an optical storage device. An output value is first set and a root-mean-square value corresponding to the current is further obtained. Next, compute a new value according to the root-mean-square value and a preset value, wherein the preset value is expressed in exponential form and related to an allowable current and a maximum current of the pick-up head. The output value is set as the new value. The pick-up head is shut down if the output value is greater than a threshold value within a sampling number, else repeating the step of obtaining the root-mean-square value.