Abstract:
Manufacture of stacked microelectronic devices is facilitated by producing subassemblies wherein adhesive pads are applied to the back surfaces of a plurality of microelectronic components in a batch fashion. In one embodiment, an adhesive payer is applied on a rear surface of a wafer. A plurality of spaced-apart adhesive pads are defined within the adhesive layer. Each adhesive pad may cover less than the entire back surface area of the component to which it is attached. A mounting member (e.g., dicing tape) may be attached to the adhesive layer and, in some embodiments, the adhesive layer may be treated so that the mounting member is less adherent to the adhesive pads than to other parts of the adhesive layer, easing removal of the adhesive pads with the microelectronic components.
Abstract:
A method of packaging semiconductor devices is described. In one embodiment, the method comprises providing a section of wafer mount tape, applying an adhesive layer to the wafer mount tape, stretching the wafer mount tape and the adhesive layer, attaching a wafer to the stretched adhesive layer, cutting the wafer and the adhesive layer, the wafer being cut into a plurality of die, and curing the wafer mount tape. In further embodiments, the method comprises removing at least one of the plurality of die from the wafer mount tape, the removed die having a portion of the adhesive layer coupled thereto, providing a die having a plurality of wire bonds coupled thereto, and coupling the adhesive layer on the removed die to the die having the wire bonds coupled thereto. In another aspect, the present invention is directed to a plurality of stacked semiconductor devices that comprise a first die, the first die having an upper surface, a second die positioned above the first die, the second die having a bottom surface, and an adhesive layer positioned between and coupled to each of the first die and the second die, the adhesive layer comprised of first and second surfaces, the first surface of the adhesive layer being coupled to the bottom surface of the second die thereby defining a first contact area, the second surface of the adhesive layer being coupled to the upper surface of the first die thereby defining a second contact area, the second contact area being less than the first contact area.
Abstract:
A method of packaging semiconductor devices is described. In one embodiment, the method comprises providing a section of wafer mount tape, applying an adhesive layer to the wafer mount tape, stretching the wafer mount tape and the adhesive layer, attaching a wafer to the stretched adhesive layer, cutting the wafer and the adhesive layer, the wafer being cut into a plurality of die, and curing the wafer mount tape. In further embodiments, the method comprises removing at least one of the plurality of die from the wafer mount tape, the removed die having a portion of the adhesive layer coupled thereto, providing a die having a plurality of wire bonds coupled thereto, and coupling the adhesive layer on the removed die to the die having the wire bonds coupled thereto. In another aspect, the present invention is directed to a plurality of stacked semiconductor devices that comprise a first die, the first die having an upper surface, a second die positioned above the first die, the second die having a bottom surface, and an adhesive layer positioned between and coupled to each of the first die and the second die, the adhesive layer comprised of first and second surfaces, the first surface of the adhesive layer being coupled to the bottom surface of the second die thereby defining a first contact area, the second surface of the adhesive layer being coupled to the upper surface of the first die thereby defining a second contact area, the second contact area being less than the first contact area.
Abstract:
A method of analyzing a chemical reaction in a material including the steps of embedding in a material an optical fiber having a cladding along substantially the entire length thereof that is in contact with the material, transmitting light through the optical fiber, and performing evanescent wave spectroscopy on the light transmitted through the optical fiber. The optical fiber preferably has a core 10-30 &mgr;m in diameter and a cladding that is on the order of 1 &mgr;m thick.
Abstract:
Methods and apparatuses for forming thin microelectronic dies. A method in accordance with one embodiment of the invention includes releasably attaching a microelectronic substrate to a support member with an attachment device. The microelectronic substrate can have a first surface, a second surface facing opposite from the first surface, and a first thickness between the first and second surfaces. The attachment device can have a releasable bond with the microelectronic substrate, wherein the bond has a bond strength that is reduced upon exposure to at least one energy. The support member can be at least partially transmissive to the at least one energy. The method can further include reducing a thickness of the microelectronic substrate and directing a quantity of the at least one energy through the support member to the attachment device to reduce the strength of the bond between the attachment device and the microelectronic substrate. At least a portion of the microelectronic substrate can then be separated from the support member. The support member can accordingly provide releasable support to the microelectronic substrate while the thickness of the microelectronic substrate is reduced.
Abstract:
A method for balancing layer-caused compressive or tensile stress in a semiconductor die, die wafer or similar substrate uses a stress-balancing layer (SBL) attached to an opposite side from a stress-causing layer before the semiconductor die or wafer is significantly warped are provided. The SBL may also serve as, or support, an adhesive layer for die attach and be of a markable material for an enhanced marking method.
Abstract:
Manufacture of stacked microelectronic devices is facilitated by producing subassemblies wherein adhesive pads are applied to the back surfaces of a plurality of microelectronic components in a batch fashion. In one embodiment, an adhesive payer is applied on a rear surface of a wafer. A plurality of spaced-apart adhesive pads are defined within the adhesive layer. Each adhesive pad may cover less than the entire back surface area of the component to which it is attached. A mounting member (e.g., dicing tape) may be attached to the adhesive layer and, in some embodiments, the adhesive layer may be treated so that the mounting member is less adherent to the adhesive pads than to other parts of the adhesive layer, easing removal of the adhesive pads with the microelectronic components.
Abstract:
A method for balancing layer-caused compressive or tensile stress in a semiconductor die, die wafer or similar substrate uses a stress-balancing layer (SBL) attached to the opposite side from the stress-causing layer before the die or wafer is significantly warped are provided. The SBL may also serve as, or support, an adhesive layer for die attach, and be of a markable material for an enhance marking method.
Abstract:
Methods and apparatuses for forming thin microelectronic dies. A method in accordance with one embodiment of the invention includes releasably attaching a microelectronic substrate to a support member with an attachment device. The microelectronic substrate can have a first surface, a second surface facing opposite from the first surface, and a first thickness between the first and second surfaces. The attachment device can have a releasable bond with the microelectronic substrate, wherein the bond has a bond strength that is reduced upon exposure to at least one energy. The support member can be at least partially transmissive to the at least one energy. The method can further include reducing a thickness of the microelectronic substrate and directing a quantity of the at least one energy through the support member to the attachment device to reduce the strength of the bond between the attachment device and the microelectronic substrate. At least a portion of the microelectronic substrate can then be separated from the support member. The support member can accordingly provide releasable support to the microelectronic substrate while the thickness of the microelectronic substrate is reduced.