Abstract:
Photodetectors that produce detectivities close to the theoretical maximum detectivity include an electrically insulating substrate carrying a body of semiconductive material that includes a region of first conductivity type and a region of second conductivity type where the first region overlies and substantially covers the top and sides of the region of second conductivity type and where the junction between the first and second regions creates a depletion layer that separates minority carriers in the region of second conductivity type from majority carriers in the region of first conductivity type. These photodetectors produce high detectivities where radiation incident on the detectors has wavelengths in the range of about 1 to about 25 microns or more, particularly under low background conditions.
Abstract:
Photodetectors that produce detectivities close to the theoretical maximum detectivity include an electrically insulating substrate carrying a body of semiconductive material that includes a region of first conductivity type and a region of second conductivity type where the first region overlies and substantially covers the top and sides of the region of second conductivity type and where the junction between the first and second regions creates a depletion layer that separates minority carriers in the region of second conductivity type from majority carriers in the region of first conductivity type. These photodetectors produce high detectivities where radiation incident on the detectors has wavelengths in the range of about 1 to about 25 microns or more, particularly under low background conditions.
Abstract:
A sensor circuit (10) device for detecting an open circuit to an electronic component (20) is disclosed. The sensor circuit (10) includes a detector circuit (12) operatively coupled to the electronic component (20), with the electronic component (20) drawing a known current and with the detector circuit (12) including an energy storage component (24). A charging circuit (14) is arranged to charge the energy storage component (24), and a processing system (16) is operatively coupled to the detector circuit (12). The processing system (16) is arranged to monitor the voltage across the energy storage component, and the processing system determines the fault status indicative of an actual current drawn by the electronic component.