摘要:
According to the present invention, a process is provided which overcomes historical limitations to the capacity of PSA units for a wide variety of gas separations. Capacities in excess of about 110 thousand normal cubic meters per hour (100 million standard cubic feet per day) can now be achieved in a single integrated process train. The corresponding significant equipment reduction results from a departure from the accepted principle in the PSA arts that the length of the purge step must be equal to or less than the length of the adsorption step. Applicants have discovered that by increasing the purge time relative to the adsorption step combined with supplying the purge gas for any adsorption bed in the train from one or more other adsorption beds and during the provide-purge step, the other adsorption beds simultaneously provide the purge gas to essentially all adsorption beds undergoing the purge step, that the single train can provide for significant increases in capacity with a minimum loss in recovery or performance. The benefit of this discovery is that very large-scale PSA units can now be constructed as a single train of equipment for a cost significantly lower than the cost of two or more parallel trains of equipment.
摘要:
Pressure swing adsorption operations for the selective adsorption of a component of a gas mixture is carried out, in multi-bed systems, so that the gas released from a bed during the cocurrent depressurization, provide-purge step is passed partly to another bed and partly to an external vessel. The gas in said vessel is thereafter used to partially repressurize said other bed after it has completed its purge step.
摘要:
The present invention relates to a pressure swing adsorption process for direct reduction of iron wherein a portion of spent reducing gas withdrawn from the direct reduction reactor is subjected to a PSA process for the removal of carbon dioxide from the spent reducing gas. An improved CO2-rejection method using an external natural gas purge stream after depressurization and before the product purge step is described. The PSA process comprises an external purge step with a non-absorbable gas, which surprisingly reduces the adsorbent regeneration requirements to maintain the selective adsorption of carbon dioxide from the spent reducing gas. The external natural gas purge results in a cleaner bed before the start of each adsorption cycle. Consequently, significantly more CO2 can be rejected and/or higher hydrogen and CO recoveries can be attained. The external purge stream is fully integrated into the DDRI production scheme.
摘要:
The present invention provides a method and apparatus for automatically controlling product repressurization in a pressure swing adsorption (PSA) process. According to the invention the same valve employed for withdrawing product from a bed during adsorption is employed to feed product gas to that bed during product repressurization. This enables the elimination of several valves, including a system-dependent valve, thereby improving system reliability. The same controllable valve may also be used to control the pressure in the PSA system.
摘要:
Processes are disclosed for the separation of light hydrocarbons from a feedstream containing hydrogen, light hydrocarbons and heavy hydrocarbons. The processes employ thermal swing adsorption zone to adsorb heavy hydrocarbons and a pressure swing adsorption zone to remove the remaining light hydrocarbons. At least a portion of the product from the pressure swing adsorption zone is used to purge the thermal swing adsorption zone. Specific applications of the process of the present invention are disclosed with relation to hydrodealkylation processes and dehydrocyclodimerization processes.
摘要:
A process for recovering hydrogen-rich gases and increasing the recovery of liquid hydrocarbon products from a hydrocarbon conversion zone effluent is improved by a particular arrangement of a refrigeration zone, a pressure swing adsorption (PSA) zone, and up to two separation zones. The admixing of at least a portion of the tail gas from the PSA zone with a hydrogen-rich gas stream recovered from a first vapor-liquid separation zone results in significantly improved hydrocarbon recoveries and the production of a high purity hydrogen product. The process is especially beneficial in the integration of the catalytic reforming process with vapor hydrogen consuming processes such as catalytic hydrocracking in a petroleum refinery.