Abstract:
A power transmission unit including a first clutch device that selectively enables and disables a torque transmitting route from an input shaft to an output shaft via a first gear train to transmit torque therethrough, a dog clutch that switches the torque transmitting route from the input shaft to the output shaft between a continuously variable speed change route in which torque is transmitted through a continuously variable transmission and a reverse route in which torque is transmitted through a second gear train, and a second clutch device that selectively enables and disables both of the continuously variable speed change route and the reverse route to transmit torque to the input shaft or the output shaft. The first clutch device and the second clutch device are separately disposed on any of the input shaft and the output shaft in a manner to be situated at different axial positions.
Abstract:
A fuel cell system performs control such that when a power requirement for the fuel cell is lower than a predetermined value, a supply of a reaction gas to a fuel cell is stopped to keep an output voltage from the fuel cell equal to a high-potential avoidance voltage that is lower than an open end voltage. The fuel cell system further controls the output voltage from the fuel cell with the high-potential avoidance voltage set to be an upper limit when the power requirement for the fuel cell is equal to or higher than a predetermined value. By setting the upper limit of the output voltage of the fuel cell to be the high-potential avoidance voltage, which is lower than the open end voltage, the catalyst can be inhibited from being degraded by an increase in the output voltage from the fuel cell up to the open end voltage.
Abstract:
The invention prevents a fuel cell from going into a high-voltage state upon activation. In a fuel cell system having a fuel cell, a control unit comprises: a high-voltage-prevention unit that prevents, under a condition permitting high-voltage prevention, a high-voltage state by reducing the output voltage of the fuel cell to less than or equal to a predetermined high-voltage-prevention voltage; an output-limitation unit that limits the fuel cell output by reducing the amount of power generation by the fuel cell to less than or equal to a predetermined power generation limit, so that the oxidizing gas stoichiometric ratio is maintained within a predetermined allowable range; and a prohibition unit that prohibits the limitation by the output limitation unit for a predetermined period of time immediately after the fuel cell is activated and where the condition permitting high-voltage prevention is satisfied.
Abstract:
A fuel cell system comprising a fuel cell and a motor connected to the fuel cell, and also comprising a converter connected between the fuel cell and the motor, the converter adjusting output of the fuel cell to output to the motor, and a controller that controls the fuel cell and the converter. The controller outputs, to the converter, request power or a request voltage based on an operation state of the fuel cell, and the converter selectively performs an output feedback control that performs an adjustment of supply power to be output to the motor such that the output request power is satisfied or a voltage feedback control that performs an adjustment of an output voltage to be output to the motor such that the output request voltage is satisfied.
Abstract:
A fuel cell system includes a fuel cell, a secondary cell, and a control portion that controls the amount of electricity generated when the fuel cell is started. A start-time target voltage is set so as to avoid the overcharged state of the secondary cell. A voltage adjustment portion that adjusts the output voltage of the fuel cell between an open-circuit voltage and a high-potential-avoiding voltage adjusts the amount of electricity generated at the time of starting the fuel cell, on the basis of the start-time target voltage.
Abstract:
The oxidizing gas supply is stopped during the catalyst activation treatment, and the output voltage of the fuel cell is linearly decreased toward the reduction target voltage. Once the interruption condition of the activation treatment has been satisfied, a voltage command value of the converter is returned to a standby voltage and, after waiting till the output voltage of the fuel cell returns to the vicinity of the standby voltage, the compressor is operated to start the supply of the oxidizing gas, and the catalyst activation treatment is completed. As a result, overcharging of the battery caused by rapid increase in the output power of the fuel cell is avoided.
Abstract:
A fuel cell system comprising a fuel cell and a motor connected to the fuel cell, and also comprising a converter connected between the fuel cell and the motor, the converter adjusting output of the fuel cell to output to the motor, and a controller that controls the fuel cell and the converter. The controller outputs, to the converter, request power or a request voltage based on an operation state of the fuel cell, and the converter selectively performs an output feedback control that performs an adjustment of supply power to be output to the motor such that the output request power is satisfied or a voltage feedback control that performs an adjustment of an output voltage to be output to the motor such that the output request voltage is satisfied.
Abstract:
A fuel cell system includes a fuel cell, a secondary cell, a voltage transformer, and a control portion. The control portion charges the secondary cell with surplus electric power at the time of starting the fuel cell, and adjusts voltage of the fuel cell between an open-circuit voltage and a high-potential-avoiding voltage in the case where the secondary cell is expected to become overcharged while the output voltage of the fuel cell is decreased from the open-circuit voltage to the high-potential-avoiding voltage. The foregoing case is at least one of the case where a passage electric power that passes through the voltage transformer exceeds a secondary cell-charging-purpose permitted-to-pass electric power, the case where the input electric power restriction value for the secondary cell is exceeded, and the case where amount of regeneration by the mover that is charged is not restricted.
Abstract:
In order to more rapidly warm up a battery device in a power supply equipped with a fuel cell and a battery device, a fuel-cell-mounted vehicle driving system for driving and controlling a rotating electric machine installed on a vehicle comprises an inverter connected to the rotating electric machine; a power supply circuit having a battery device, a voltage converter, and a fuel cell; and a power supply control device for controlling the power supply circuit. The power supply control device includes an FC output voltage setting module for setting the output voltage of the fuel cell, an OCV avoidance module for, when an FC output voltage is set, avoiding a voltage around an OCV, a battery warm-up control determination module for determining whether the battery device is under warm-up control or not, and an OCV avoidance release module for, when the battery device is under the warm-up control, releasing the OCV avoidance.
Abstract:
To assemble a belt including a plurality of elements and a ring for fastening the element efficiently. A belt assembling apparatus for fastening a plurality of plate-like elements being juxtaposed in a same orientation annularly by a ring includes a load applying mechanism, which applies a load to the ring or to the elements which have already been fastened by the ring during a process of fastening the elements sequentially by the ring, thereby widening a clearance in an array of the elements being fastened by the ring. Therefore, the clearance to which the last piece of the element to be fastened by the ring is inserted can be widened relatively so that the element is allowed to be inserted into the clearance easily.