摘要:
A powerful fiber laser system is configured with at least one gain block. The gain block includes an input fiber guiding a pump light, a multiclad active fiber receiving the pump light so that a major portion is absorbed in the core of the active fiber while a minor portion of the pump light propagates in the inner cladding of the active fiber, and a multiclad output fiber. The multiclad output fiber is configured with a core, guiding a signal lased by the core of the active fiber upon absorption of the major portion of the pump light, an inner cladding receiving the minor portion of the pump light and an outer cladding. The inner and outer claddings of the multiclad output fiber have respective refractive indexes which are selected so that the refractive index of the outer cladding is higher than that one of the inner cladding. The configuration of the output fiber allows for the removal of substantially the entire light from the inner cladding of the output fiber before the signal is emitted through the downstream end of the output fiber.
摘要:
A high power fiber laser is configured with a multimode active fiber and input and output single mode passive fibers butt-spliced to respective opposite ends of the active fiber. If the input passive and active fibers do not have substantially matched diameters, a SM radiation coupled into the active fiber may excite fundamental and high order modes which, while interfering with one another, create a non-uniform distribution of refractive index in each of forward and backward light propagation directions along the resonator of the laser. The variable longitudinal perturbation components of the refractive index in respective forward and backward directions along an optical path in the active fiber are distributed in accordance with respective cosine functions. The length of the optical path is set so that the cosine functions of the respective perturbation components are shifted in a counter-phase position in which a cross-coupling coefficient between fundamental and high-order modes is substantially minimized. The optimal length of the optical path is maintained by controlling by either an ambient temperature or an electric field of piezo-element coupled to the MM active fiber. As a consequence, the disclosed high power fiber laser emits radiation in a fundamental mode having minimum power losses.
摘要:
A high power fiber laser is configured with a multimode active fiber and input and output single mode passive fibers butt-spliced to respective opposite ends of the active fiber. If the input passive and active fibers do not have substantially matched diameters, a SM radiation coupled into the active fiber may excite fundamental and high order modes which, while interfering with one another, create a non-uniform distribution of refractive index in each of forward and backward light propagation directions along the resonator of the laser. The variable longitudinal perturbation components of the refractive index in respective forward and backward directions along an optical path in the active fiber are distributed in accordance with respective cosine functions. The length of the optical path is set so that the cosine functions of the respective perturbation components are shifted in a counter-phase position in which a cross-coupling coefficient between fundamental and high-order modes is substantially minimized. The optimal length of the optical path is maintained by controlling by either an ambient temperature or an electric field of piezo-element coupled to the MM active fiber. As a consequence, the disclosed high power fiber laser emits radiation in a fundamental mode having minimum power losses.
摘要:
A powerful fiber laser system is configured with at least one gain block. The gain block includes an input fiber guiding a pump light, a multiclad active fiber receiving the pump light so that a major portion is absorbed in the core of the active fiber while a minor portion of the pump light propagates in the inner cladding of the active fiber, and a multiclad output fiber. The multiclad output fiber is configured with a core, guiding a signal lased by the core of the active fiber upon absorption of the major portion of the pump light, an inner cladding receiving the minor portion of the pump light and an outer cladding. The inner and outer claddings of the multiclad output fiber have respective refractive indexes which are selected so that the refractive index of the outer cladding is higher than that one of the inner cladding. The configuration of the output fiber allows for the removal of substantially the entire light from the inner cladding of the output fiber before the signal is emitted through the downstream end of the output fiber.