Abstract:
An image data correction method includes preparing correction data for correcting a distortion of an image obtained by an image acquiring section, acquiring outline data of a desired pattern obtained by the image acquiring section, and correcting the outline data of the desired pattern using the correction data.
Abstract:
A pattern evaluation method for evaluating a mask pattern includes generating desired wafer pattern data corresponding to the evaluation position of a mask pattern, generating mask pattern contour data based on an image of the mask pattern, and performing a lithography/simulation process based on the mask pattern contour data and generating predicted wafer pattern data when the mask pattern is transferred to a wafer. Further, it includes deriving positional offset between the mask pattern contour data and mask pattern data, correcting a positional error between the desired wafer pattern data and the predicted wafer pattern data based on the positional offset, and comparing the desired wafer pattern data with the predicted wafer pattern data with the positional error corrected.
Abstract:
An image data correction method includes preparing correction data for correcting a distortion of an image obtained by an image acquiring section, acquiring outline data of a desired pattern obtained by the image acquiring section, and correcting the outline data of the desired pattern using the correction data.
Abstract:
A mask pattern verifying method include obtaining first information about a hot spot from design data of a mask pattern, obtaining second information about the mask pattern actually formed on a photo mask, and determining a measuring spot of the mask pattern actually formed on the photo mask, based on the first and second information.
Abstract:
A new method for repairing pattern defect on a photo mask is provided. The method includes the steps of: (a) determining the irradiation area of the focused ion beam (FIB) directed towards a defect, by narrowing the irradiation area by a predetermined distance inwardly from the edge of the defect; (b) focusing the FIB onto its irradiation area to remove a part of the pattern film material of the defect from its top surface and thus leave a thin layer on a mask substrate; and (c) removing the thin layer by using a laser beam. The defect may be an isolated pattern or a pattern extended continuously from an edge of the normal pattern. Further, the photo mask repaired by the method, and a manufacturing method of semiconductor devices employing the repaired photo mask are proposed. The photo mask may include a phase shift mask.
Abstract:
A mask pattern verifying method include obtaining first information about a hot spot from design data of a mask pattern, obtaining second information about the mask pattern actually formed on a photo mask, and determining a measuring spot of the mask pattern actually formed on the photo mask, based on the first and second information.
Abstract:
An external monitoring system operating for a communication system comprising a common channel signaling unit for separating a message communication function from a communication function and for transmitting a data communication signal through an exclusive line, a signal processing unit for processing the communication using the common channel signaling unit, and an alarm processing unit for generating an alarm signal when an abnormal condition has arisen in the communication associated with the common channel signal processing unit, the alarm processing unit includes an external communication monitoring unit for monitoring an abnormal condition in communication control by the signal processing unit.
Abstract:
A pattern evaluation method for evaluating a mask pattern includes generating desired wafer pattern data corresponding to the evaluation position of a mask pattern, generating mask pattern contour data based on an image of the mask pattern, and performing a lithography/simulation process based on the mask pattern contour data and generating predicted wafer pattern data when the mask pattern is transferred to a wafer. Further, it includes deriving positional offset between the mask pattern contour data and mask pattern data, correcting a positional error between the desired wafer pattern data and the predicted wafer pattern data based on the positional offset, and comparing the desired wafer pattern data with the predicted wafer pattern data with the positional error corrected.