摘要:
Sub-pixel rendering with gamma adjustment allows the luminance of the sub-pixel arrangement to match the non-linear gamma response of the human eye's luminance channel. For each of a subset of input sampled data indicating a region of an input image, a gamma-adjusted data value is generated for each input image data value in the subset using a local average of at least two input image data values. A sub-pixel rendering operation uses the subset of gamma-adjusted data values and the subset of input image data values to produce an output data value for each sub-pixel element on the display panel. A plurality of output data values collectively indicates an output image. The gamma adjustment allows the sub-pixel rendering to operate independently of the actual gamma of a display device. The sub-pixel rendering techniques with gamma adjustment may improve image contrast in high spatial frequency portions of an image.
摘要:
Methods are disclosed to render image data over time. In one embodiment, a mapping from image data values to first and second sets of subpixels in a plurality of output frames uses brightness versus viewing angle performance measures to reduce color error when the image is viewed on the display panel at an off-normal viewing angle. In another embodiment, temporal subpixel rendering is used to improve the viewing angle in LCD displays or to improve subpixel rendering in other display technologies.
摘要:
System and methods are disclosed for improving the off-normal axis viewing angle by applying different filters if one colored sub-pixel data is driven close to 100% luminance while other colored sub-pixel data is driven close to 50% luminance values. Systems and methods for adjusting the viewing characteristics of the display system are also disclosed.
摘要:
The gamma adjustment allows the luminance for the sub-pixel arrangement to match the non-linear gamma response of the human eye's luminance channel, while the chrominance can match the linear response of the human eye's chrominance channels. The gamma correction allows the algorithms to operate independently of the actual gamma of a display device. The sub-pixel rendering techniques disclosed with gamma adjustment can be optimized for a display device gamma to improve response time, dot inversion balance, and contrast because gamma correction and compensation of the sub-pixel rendering algorithm provides the desired gamma through sub-pixel rendering. These techniques can adhere to any specified gamma transfer curve.
摘要:
A display system (110) has a subpixel array (120) and a light source (140). In normal mode, image data (164) are processed by the display system to generate subpixel values (174) for the subpixels (130) and to generate a light source control value (BL) for the light source (140). In bypass mode suitable for testing new types of image-data processing, the subpixel values and the light source control value are generated by an external system (210) and are provided to the display system which is operated in bypass mode. The light source control value is not provided separately from the subpixel values but is encoded into some bits of the subpixel values for compatibility with older interfaces. The light source control value is encoded into the subpixel values' MSBs in case the subpixel values could be truncated. Other features are also provided.
摘要:
Sub-pixel rendering with gamma adjustment allows the luminance for the sub-pixel arrangement to match the non-linear gamma response of the human eye's luminance channel, while the chrominance can match the linear response of the human eye's chrominance channels. The gamma correction allows the sub-pixel rendering to operate independently of the actual gamma of a display device. The sub-pixel rendering techniques with gamma adjustment may be optimized for the gamma transfer curve of a display device in order to improve response time, dot inversion balance, and contrast.
摘要:
A display system (110) has a subpixel array (120) and a light source (140). In normal mode, image data (164) are processed by the display system to generate subpixel values (174) for the subpixels (130) and to generate a light source control value (BL) for the light source (140). In bypass mode suitable for testing new types of image-data processing, the subpixel values and the light source control value are generated by an external system (210) and are provided to the display system which is operated in bypass mode. The light source control value is not provided separately from the subpixel values but is encoded into some bits of the subpixel values for compatibility with older interfaces. The light source control value is encoded into the subpixel values' MSBs in case the subpixel values could be truncated. Other features are also provided.
摘要:
Sub-pixel rendering with gamma adjustment allows the luminance of the sub-pixel arrangement to match the non-linear gamma response of the human eye's luminance channel. For each of a subset of input sampled data indicating a region of an input image, a gamma-adjusted data value is generated for each input image data value in the subset using a local average of at least two input image data values. A sub-pixel rendering operation uses the subset of gamma-adjusted data values and the subset of input image data values to produce an output data value for each sub-pixel element on the display panel. A plurality of output data values collectively indicates an output image. The gamma adjustment allows the sub-pixel rendering to operate independently of the actual gamma of a display device. The sub-pixel rendering techniques with gamma adjustment may improve image contrast in high spatial frequency portions of an image.
摘要:
System and methods are disclosed for improving the off-normal axis viewing angle by applying different filters if one colored sub-pixel data is driven close to 100% luminance while other colored sub-pixel data is driven close to 50% luminance values. Systems and methods for adjusting the viewing characteristics of the display system are also disclosed.
摘要:
Methods are disclosed to render image data over time. In one embodiment, a mapping from image data values to first and second sets of subpixels in a plurality of output frames uses brightness versus viewing angle performance measures to reduce color error when the image is viewed on the display panel at an off-normal viewing angle. In another embodiment, temporal subpixel rendering is used to improve the viewing angle in LCD displays or to improve subpixel rendering in other display technologies.