摘要:
Vascularizing cell aggregates or tissue segments in a microfluidic device by filling a chamber within the device with a matrix that allows for endothelial sprouting; creating at least three voids within the matrix, of which at least two outer voids are lumenally connected to separate perfusion paths within the device and at least one additional void is positioned in between the at least two outer voids; endothelializing the at least two outer voids; introducing at least one cell type, matrix material, tissue segment, or combinations thereof into the void between the two outer voids; and using vascular growth factors to induce the endothelial cells to sprout into the matrix until the at least three voids are interconnected by endothelial sprouts.
摘要:
A microfluidic system including a number of microfluidic devices having a first perfusion path and a second separate perfusion path; the microfluidic devices each also having a chamber containing a matrix, where the matrix surrounds at least one void whose lumen is in fluidic connection exclusively with the first perfusion path, where the at least one void is populated with at least one cell type in such way that the cells are in direct contact with the matrix; where the matrix is in fluidic connection exclusively with the second separate perfusion path. The microfluidic devices are integrated onto a platform; and each of the microfluidic devices mimics at least a partial organ module.
摘要:
A microfluidic system for generating compartmentalized microenvironments of tissues and organs in vitro and for independently perfusing the compartments. A microfluidic device that includes at least a first perfusion path and a second separate perfusion path. The microfluidic device also has a chamber containing a matrix, where the matrix surrounds at least one void whose lumen is in fluidic connection exclusively with the first perfusion path, where the at least one void can be populated with at least one cell type in such way that the cells are in direct contact with the matrix and the matrix is in fluidic connection exclusively with the second separate perfusion path.