Abstract:
An adjustable focusing electrically controllable electroactive lens is provided. The adjustable focusing electrically controllable electroactive lens can adjust the focal length discretely or continuously. The lens can be incorporated in a variety of optical devices including spectacles.
Abstract:
A photorefractive device (100) and method of manufacture are disclosed. The device (100) comprises a layered structure in which one or more polymer layers (110) are interposed between a photorefractive material (106) and at least one transparent electrode layer (104). The layered structure is further interposed between a plurality of substrates (102). When a bias is applied to the device (100), the device (100) exhibits an increase in signal efficiency of approximately three to four times that of similar, but non-buffered, devices. Concurrently, the device (100) of the present disclosure utilizes approximately half the biased voltage, advantageously resulting in a longer device lifetime.
Abstract:
An optical device including: a first transparent substrate; a first electrode disposed on the first transparent substrate; a first mirror disposed on the first electrode; a high electro-optic coefficient polymer or sol-gel material disposed on the first mirror; a second mirror disposed on the high electro-optic coefficient polymer or sol-gel material and at least partially sandwiching the sol-gel material between the first and second mirrors; a second electrode disposed on the second mirror; and a second transparent substrate disposed on the second electrode.
Abstract:
An adjustable focusing electrically controllable electroactive lens is provided. The adjustable focusing electrically controllable electroactive lens can adjust the focal length discretely or continuously. The lens can be incorporated in a variety of optical devices including spectacles.
Abstract:
A high-resolution sensor of magnetic field sensor system and materials for use in such a system are described. The sensor systems measure a magnetic field using inorganic and/or organic magneto-optically active materials, e.g. polymer material and have an interferometer based on Faraday rotation. The polymer material is preferably in the form of a film. The polymer material has an optical property that is sensitive to the magnetic field, eg the Faraday rotation effect. The present invention also provides a sensor head structure comprising the above polymer material. The sensor head may be designed for use with an optical fiber or with mirrors In particular the present invention provides a fiber Sagnac interferometer to measure the rotation of polarized plane of light. The present invention provides a fiber or mirror based Sagnac interferometer with passive phase bias applied to magnetic field sensing.
Abstract:
A first optical fiber (12) having a first end and a second end is connected to a multimode second optical fiber (14) at the second end. The first optical fiber (12) outputs a substantially single mode optical beam at its second end. The multimode second optical fiber (14) converts light in the optical beam of single mode from the first optical fiber to light of multiple modes, and provides an output beam that has less diffractive spreading than that of a Gaussian beam.
Abstract:
Optical devices and a method for manufacturing these devices. One optical device includes a core region having a first medium of a first refractive index n1, and includes a cladding region exterior to the core region. The cladding region includes a second medium having a second refractive index n2 higher than the first refractive index n1. The cladding region further includes a third medium having a third refractive index n3 lower than the first refractive index n1. The third medium is dispersed in the second medium to form a plurality of microstructures in the cladding region. Another optical device includes a plurality of core regions including at least one core having a doped first medium, and includes a cladding region exterior to the plurality of core regions. The core regions and the cladding region include a phosphate glass.
Abstract:
A method for fabricating organic light-emitting diodes (OLEDs) and OLED displays using screen-printing, where a first electrode, at least one organic material, and a second electrode are formed on a substrate and at least one of the first and second electrodes and the at least one organic material is screen printed by positioning a screen with openings forming a pattern above a substrate and depositing a material onto the substrate through the openings. Exemplary embodiments include fabricating the electrodes and/or the at least one organic material as continuous layers or uniform, discrete blocks on the substrate and fabricating red, green, and blue OLEDs on the same substrate, which are then placed in OLED displays.
Abstract:
A high-resolution sensor of magnetic field sensor system and materials for use in such a system are described. The sensor systems measure a magnetic field using inorganic and/or organic magneto-optically active materials, e.g. polymer material and have an interferometer based on Faraday rotation. The polymer material is preferably in the form of a film. The polymer material has an optical property that is sensitive to the magnetic field, e g the Faraday rotation effect. The present invention also provides a sensor head structure comprising the above polymer material. The sensor head may be designed for use with an optical fiber or with mirrors In particular the present invention provides a fiber Sagnac interferometer to measure the rotation of polarized plane of light. The present invention provides a fiber or mirror based Sagnac interferometer with passive phase bias applied to magnetic field sensing.
Abstract:
Optical devices and a method for manufacturing these devices. One optical device includes a core region having a first medium of a first refractive index n1, and includes a cladding region exterior to the core region. The cladding region includes a second medium having a second refractive index n2 higher than the first refractive index n1. The cladding region further includes a third medium having a third refractive index n3 lower than the first refractive index n1. The third medium is dispersed in the second medium to form a plurality of microstructures in the cladding region. Another optical device includes a plurality of core regions including at least one core having a doped first medium, and includes a cladding region exterior to the plurality of core regions. The core regions and the cladding region include a phosphate glass.