Abstract:
Methods and devices are provided for efficient transmission of data between storage area networks. According to some aspects of the invention, novel methods are provided for processing data packets sent by, or received from, a storage area network. Some such aspects of the invention involve storing a packet (or a portion of a packet) in a single memory location during an encapsulation or de-encapsulation process. Instead of repeatedly copying the packet during processing, pointer information is passed along that indicates the single memory location. In some aspects of the invention, the segment boundaries of a packet are retained after data transmission. If data in the packet need to be re-transmitted, the packet is re-transmitted with the same segment boundaries.
Abstract:
Method and devices are provided to form virtual switches for data networks. As noted above, the term “switch” as used herein will apply to switches, routers and similar network devices. Each virtual switch acts as a single logical unit, while encompassing at least two physical chassis. Accordingly, each virtual switch may be treated as a single point of management. Each virtual switch includes a master chassis and at least one slave chassis. The master chassis is configured to control the slave chassis. The master chassis includes at least one master supervisor card and the slave chassis includes at least one slave supervisor card. The master chassis and the slave chassis communicate via a virtual switch link according to a virtual switch link protocol.
Abstract:
Methods and devices are provided for efficient transmission of data between storage area networks. According to some aspects of the invention, a “slim” TCP stack is provided which eliminates the socket layer found in a conventional TCP stack, thereby eliminating socket buffers and the associated buffer-to-buffer copying. Moreover, by eliminating the socket layer, one eliminates the listen state. This condition allows TCP processing in an interrupt context instead of client/server operation with a listen state. Accordingly, some aspects of the invention provide for transmitting data between SANs in an interrupt context.
Abstract:
Methods and devices are provided for efficient transmission of data between storage area networks. According to some aspects of the invention, novel methods are provided for processing data packets sent by, or received from, a storage area network. Some such aspects of the invention involve storing a packet (or a portion of a packet) in a single memory location during an encapsulation or de-encapsulation process. Instead of repeatedly copying the packet during processing, pointer information is passed along that indicates the single memory location. In some aspects of the invention, the segment boundaries of a packet are retained after data transmission. If data in the packet need to be re-transmitted, the packet is re-transmitted with the same segment boundaries.
Abstract:
Methods and devices are provided for efficient transmission of data between storage area networks. According to some aspects of the invention, novel methods are provided for processing data packets sent by, or received from, a storage area network. Some such aspects of the invention involve storing a packet (or a portion of a packet) in a single memory location during an encapsulation or de-encapsulation process. Instead of repeatedly copying the packet during processing, pointer information is passed along that indicates the single memory location. In some aspects of the invention, the segment boundaries of a packet are retained after data transmission. If data in the packet need to be re-transmitted, the packet is re-transmitted with the same segment boundaries.
Abstract:
Method and devices are provided to form virtual switches for data networks. As noted above, the term “switch” as used herein will apply to switches, routers and similar network devices. Each virtual switch acts as a single logical unit, while encompassing at least two physical chassis. Accordingly, each virtual switch may be treated as a single point of management. Each virtual switch includes a master chassis and at least one slave chassis. The master chassis is configured to control the slave chassis. The master chassis includes at least one master supervisor card and the slave chassis includes at least one slave supervisor card. The master chassis and the slave chassis communicate via a virtual switch link according to a virtual switch link protocol.